Construction of Nano ZnV2O4/N-Doped Porous Carbon Composites with Optimized Ionic and Electronic Conductivities as Competitive Cathodes toward Zinc-Ion Capacitors

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-09-17 DOI:10.1002/cnma.202400445
Hao Jiang, Peng Yue, Qinchao Gao, Shujia Zhang, Musen Gao, Jinlong Wang, Yang Liu, Linrui Hou, Meng Chen, Changzhou Yuan
{"title":"Construction of Nano ZnV2O4/N-Doped Porous Carbon Composites with Optimized Ionic and Electronic Conductivities as Competitive Cathodes toward Zinc-Ion Capacitors","authors":"Hao Jiang,&nbsp;Peng Yue,&nbsp;Qinchao Gao,&nbsp;Shujia Zhang,&nbsp;Musen Gao,&nbsp;Jinlong Wang,&nbsp;Yang Liu,&nbsp;Linrui Hou,&nbsp;Meng Chen,&nbsp;Changzhou Yuan","doi":"10.1002/cnma.202400445","DOIUrl":null,"url":null,"abstract":"<p>Zinc-ion capacitors (ZICs) have great potential for energy storage applications due to high safety, environmental friendliness, low cost, and high energy density. However, challenges such as poor ion diffusion kinetics and the low conductivity of cathode materials still need to be addressed. Nano ZnV<sub>2</sub>O<sub>4</sub>/nitrogen-doped porous carbon (ZVO/N-PC) composites are efficiently synthesized <i>via</i> a simple annealing process. Highly crystalline ZVO nanoparticles are <i>in-situ</i> grown on the three-dimensional N-PC surface by precisely tuning the ratio of the vanadium source, achieving a dual enhancement in electronic and ionic conductivities. Benefiting from the nanoengineering build-up, the optimized ZVO-0.6/N-PC anode exhibits impressive rate performance (405.9/308.8 mAh g<sup>−1</sup> at 0.2/5.0 A g<sup>−1</sup>) and cycling capability (0.0029 % capacity drop per cycle at 5.0 A g<sup>−1</sup> after 5,800 cycles). Using nitrogen-doped porous activated carbon (N-PAC) as the anode and ZVO-0.6/N-PC as the cathode, the assembled ZICs deliver a high energy density of 27.5 Wh kg<sup>−1</sup> at a power density of 450.0 W kg<sup>−1</sup>. After 10,000 cycles at 1.0 A g<sup>−1</sup>, the capacity retention rate remains as 72.8 %, demonstrating excellent cycling stability. This highlights the promising application of nano ZVO/N-PC composites towards ZICs as competitive cathodes.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400445","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-ion capacitors (ZICs) have great potential for energy storage applications due to high safety, environmental friendliness, low cost, and high energy density. However, challenges such as poor ion diffusion kinetics and the low conductivity of cathode materials still need to be addressed. Nano ZnV2O4/nitrogen-doped porous carbon (ZVO/N-PC) composites are efficiently synthesized via a simple annealing process. Highly crystalline ZVO nanoparticles are in-situ grown on the three-dimensional N-PC surface by precisely tuning the ratio of the vanadium source, achieving a dual enhancement in electronic and ionic conductivities. Benefiting from the nanoengineering build-up, the optimized ZVO-0.6/N-PC anode exhibits impressive rate performance (405.9/308.8 mAh g−1 at 0.2/5.0 A g−1) and cycling capability (0.0029 % capacity drop per cycle at 5.0 A g−1 after 5,800 cycles). Using nitrogen-doped porous activated carbon (N-PAC) as the anode and ZVO-0.6/N-PC as the cathode, the assembled ZICs deliver a high energy density of 27.5 Wh kg−1 at a power density of 450.0 W kg−1. After 10,000 cycles at 1.0 A g−1, the capacity retention rate remains as 72.8 %, demonstrating excellent cycling stability. This highlights the promising application of nano ZVO/N-PC composites towards ZICs as competitive cathodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建具有优化离子和电子电导率的纳米 ZnV2O4/N 掺杂多孔碳复合材料,作为锌离子电容器的竞争性阴极
锌离子电容器(ZIC)具有高安全性、环保性、低成本和高能量密度等特点,在储能应用中具有巨大潜力。然而,离子扩散动力学差和阴极材料电导率低等挑战仍有待解决。纳米 ZnV2O4/掺氮多孔碳(ZVO/N-PC)复合材料是通过简单的退火工艺高效合成的。通过精确调节钒源的比例,在三维 N-PC 表面原位生长出高结晶 ZVO 纳米颗粒,实现了电子和离子导电性的双重增强。得益于纳米工程的积累,优化后的 ZVO-0.6/N-PC 阳极表现出令人印象深刻的速率性能(0.2/5.0 A g-1 时分别为 405.9/308.8 mAh g-1)和循环能力(5.0 A g-1 时经过 5,800 个循环后每个循环的容量下降 0.0029%)。使用掺氮多孔活性炭(N-PAC)作为阳极,ZVO-0.6/N-PC 作为阴极,组装后的 ZIC 在 450.0 W kg-1 的功率密度下可提供 27.5 Wh kg-1 的高能量密度。在 1.0 A g-1 的条件下循环 10,000 次后,容量保持率仍为 72.8%,显示出卓越的循环稳定性。这凸显了纳米 ZVO/N-PC 复合材料作为有竞争力阴极的 ZIC 的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Front Cover: Trichosanthes Cucumerina Derived Activated Carbon: The Potential Electrode material for High Energy Symmetric Supercapacitor (ChemNanoMat 12/2024) Front Cover: Single Source Precursor Path to 2D Materials: A Case Study of Solution-Processed Molybdenum-Rich MoSe2-x Ultrathin Nanosheets (ChemNanoMat 11/2024) Facile Fabrication of LaFeO3 Supported Pd Nanoparticles as Highly Effective Heterogeneous Catalyst for Suzuki–Miyaura Coupling Reaction Effect of Electric Field on Carbon Encapsulation and Catalytic Activity of Pd for Efficient Formic Acid Decomposition Two-Dimensional Metal Covalent Organic Polymers with Dirhodium(II) Photoreduction Centers for Efficient Nitrogen Fixation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1