Amino Acid Adsorption Onto Magnetic Nanoparticles Reveals Correlations With Physicochemical Parameters

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-09-13 DOI:10.1002/cnma.202400280
Alexander D. Sapp, Carlos E. Díaz-Cano, Dr. Jozef Lengyel, Lucía Abarca-Cabrera, Dr. Paula Fraga-García
{"title":"Amino Acid Adsorption Onto Magnetic Nanoparticles Reveals Correlations With Physicochemical Parameters","authors":"Alexander D. Sapp,&nbsp;Carlos E. Díaz-Cano,&nbsp;Dr. Jozef Lengyel,&nbsp;Lucía Abarca-Cabrera,&nbsp;Dr. Paula Fraga-García","doi":"10.1002/cnma.202400280","DOIUrl":null,"url":null,"abstract":"<p>We analyze the adsorption of the proteinogenic amino acids (AAs) glutamine, glutamic acid, lysine, tyrosine, proline, and valine onto bare iron oxide nanoparticles (approx. 10 nm). Aiming to identify the governing principles of low molecular weight coronae, which remain underinvestigated, our study covers broad concentration ranges up to the solubility limit of the AAs. Isothermal experiments reveal that the highly soluble AAs valine, proline, and lysine form extensive multilayers on the nanoparticle surface, and infrared measurements indicate intermolecular interactions, particularly with valine and lysine, for higher AA contents. Conversely, the low solubility of tyrosine and glutamic acid restricts their adsorption capacity, despite their higher partitioning on the solid surface. Parameters derived from fitting a classic saturation model seem to align with well-documented physicochemical properties such as the hydrophobicity and the complexity indices – a promising first step towards formulating design principles. Scaling these parameters by the AA solubility reveals a clear correlation with the adsorption behavior. In adsorption experiments with AA model mixtures, sequential incubation increases the adsorption capacity for valine and proline, whereas simultaneous incubation with these AAs reduces tyrosine's capacity. Future studies should seek to elucidate adsorption patterns to advance our understanding of corona growth and evolution mechanisms.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnma.202400280","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400280","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the adsorption of the proteinogenic amino acids (AAs) glutamine, glutamic acid, lysine, tyrosine, proline, and valine onto bare iron oxide nanoparticles (approx. 10 nm). Aiming to identify the governing principles of low molecular weight coronae, which remain underinvestigated, our study covers broad concentration ranges up to the solubility limit of the AAs. Isothermal experiments reveal that the highly soluble AAs valine, proline, and lysine form extensive multilayers on the nanoparticle surface, and infrared measurements indicate intermolecular interactions, particularly with valine and lysine, for higher AA contents. Conversely, the low solubility of tyrosine and glutamic acid restricts their adsorption capacity, despite their higher partitioning on the solid surface. Parameters derived from fitting a classic saturation model seem to align with well-documented physicochemical properties such as the hydrophobicity and the complexity indices – a promising first step towards formulating design principles. Scaling these parameters by the AA solubility reveals a clear correlation with the adsorption behavior. In adsorption experiments with AA model mixtures, sequential incubation increases the adsorption capacity for valine and proline, whereas simultaneous incubation with these AAs reduces tyrosine's capacity. Future studies should seek to elucidate adsorption patterns to advance our understanding of corona growth and evolution mechanisms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁性纳米粒子上的氨基酸吸附与理化参数的相关性
我们分析了蛋白源氨基酸(AAs)谷氨酰胺、谷氨酸、赖氨酸、酪氨酸、脯氨酸和缬氨酸在裸氧化铁纳米颗粒(约 10 nm)上的吸附情况。低分子量电晕的基本原理尚未得到充分研究,我们的研究旨在确定低分子量电晕的基本原理。等温实验显示,高溶解度 AAs 缬氨酸、脯氨酸和赖氨酸在纳米粒子表面形成了广泛的多层膜,红外测量显示,当 AAs 含量较高时,分子间相互作用,尤其是与缬氨酸和赖氨酸的相互作用。相反,尽管酪氨酸和谷氨酸在固体表面的分配率较高,但它们的低溶解度限制了它们的吸附能力。通过拟合经典饱和模型得出的参数似乎与疏水性和复杂性指数等有据可查的理化特性相吻合--这是为制定设计原则迈出的充满希望的第一步。通过 AA 溶解度对这些参数进行缩放,可以发现它们与吸附行为有着明显的相关性。在 AA 模型混合物的吸附实验中,连续培养会提高缬氨酸和脯氨酸的吸附能力,而同时培养这些 AA 则会降低酪氨酸的吸附能力。未来的研究应寻求阐明新的吸附模式,以促进我们对电晕生长和演化机制的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Front Cover: Trichosanthes Cucumerina Derived Activated Carbon: The Potential Electrode material for High Energy Symmetric Supercapacitor (ChemNanoMat 12/2024) Front Cover: Single Source Precursor Path to 2D Materials: A Case Study of Solution-Processed Molybdenum-Rich MoSe2-x Ultrathin Nanosheets (ChemNanoMat 11/2024) Facile Fabrication of LaFeO3 Supported Pd Nanoparticles as Highly Effective Heterogeneous Catalyst for Suzuki–Miyaura Coupling Reaction Effect of Electric Field on Carbon Encapsulation and Catalytic Activity of Pd for Efficient Formic Acid Decomposition Two-Dimensional Metal Covalent Organic Polymers with Dirhodium(II) Photoreduction Centers for Efficient Nitrogen Fixation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1