Milena Kowalska, Paweł Czaja, Łukasz Rogal, Maciej J. Szczerba
{"title":"Effect of Linear Velocity on Magneto-mechanical Properties of Ni-Mn-Ga-Based Melt-Spun Ribbons","authors":"Milena Kowalska, Paweł Czaja, Łukasz Rogal, Maciej J. Szczerba","doi":"10.1007/s11661-024-07585-4","DOIUrl":null,"url":null,"abstract":"<p>The study brings original data on the effect of linear velocity during melt-spinning process on magneto-mechanical properties of Heusler Ni-Mn-Ga-based melt-spun ribbons. The research revealed that different linear velocity of the copper wheel had a significant impact on the ribbon's geometry resulting in distinct changes in magneto-mechanical properties. X-ray diffraction measurements were used to examine the phase composition, confirming the presence of L2<sub>1</sub> austenite phase. To assess the mechanical properties of the Ni-Mn-Ga-based melt-spun ribbons, cyclic bending experiments were conducted at a strain rate of 0.1 mm/s. Additionally, experiments involving magnetic field-induced bending were carried out in an external magnetic field ranging from 0 to 0.28 T. Finally, it was observed that there was a proportional relationship between the linear velocity of the copper wheel and magnetic field-induced ribbons deflection. Conversely, the dependence between linear velocity and mechanical bending load was found to be inversely proportional. Electron backscattered diffraction measurements revealed that melt-spun ribbons produced at high linear velocity of 18.5 m/s exhibited fine-grained microstructure in contrast to low linear velocity of 3 m/s. Based on these results it seems feasible to optimize the functional properties of the studied ribbons by varying the linear velocity of the melt-spinning process.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07585-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The study brings original data on the effect of linear velocity during melt-spinning process on magneto-mechanical properties of Heusler Ni-Mn-Ga-based melt-spun ribbons. The research revealed that different linear velocity of the copper wheel had a significant impact on the ribbon's geometry resulting in distinct changes in magneto-mechanical properties. X-ray diffraction measurements were used to examine the phase composition, confirming the presence of L21 austenite phase. To assess the mechanical properties of the Ni-Mn-Ga-based melt-spun ribbons, cyclic bending experiments were conducted at a strain rate of 0.1 mm/s. Additionally, experiments involving magnetic field-induced bending were carried out in an external magnetic field ranging from 0 to 0.28 T. Finally, it was observed that there was a proportional relationship between the linear velocity of the copper wheel and magnetic field-induced ribbons deflection. Conversely, the dependence between linear velocity and mechanical bending load was found to be inversely proportional. Electron backscattered diffraction measurements revealed that melt-spun ribbons produced at high linear velocity of 18.5 m/s exhibited fine-grained microstructure in contrast to low linear velocity of 3 m/s. Based on these results it seems feasible to optimize the functional properties of the studied ribbons by varying the linear velocity of the melt-spinning process.