WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models

Weixin Jin, Jonathan Weyn, Pengcheng Zhao, Siqi Xiang, Jiang Bian, Zuliang Fang, Haiyu Dong, Hongyu Sun, Kit Thambiratnam, Qi Zhang
{"title":"WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models","authors":"Weixin Jin, Jonathan Weyn, Pengcheng Zhao, Siqi Xiang, Jiang Bian, Zuliang Fang, Haiyu Dong, Hongyu Sun, Kit Thambiratnam, Qi Zhang","doi":"arxiv-2409.09371","DOIUrl":null,"url":null,"abstract":"In recent years, AI-based weather forecasting models have matched or even\noutperformed numerical weather prediction systems. However, most of these\nmodels have been trained and evaluated on reanalysis datasets like ERA5. These\ndatasets, being products of numerical models, often diverge substantially from\nactual observations in some crucial variables like near-surface temperature,\nwind, precipitation and clouds - parameters that hold significant public\ninterest. To address this divergence, we introduce WeatherReal, a novel\nbenchmark dataset for weather forecasting, derived from global near-surface\nin-situ observations. WeatherReal also features a publicly accessible quality\ncontrol and evaluation framework. This paper details the sources and processing\nmethodologies underlying the dataset, and further illustrates the advantage of\nin-situ observations in capturing hyper-local and extreme weather through\ncomparative analyses and case studies. Using WeatherReal, we evaluated several\ndata-driven models and compared them with leading numerical models. Our work\naims to advance the AI-based weather forecasting research towards a more\napplication-focused and operation-ready approach.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, AI-based weather forecasting models have matched or even outperformed numerical weather prediction systems. However, most of these models have been trained and evaluated on reanalysis datasets like ERA5. These datasets, being products of numerical models, often diverge substantially from actual observations in some crucial variables like near-surface temperature, wind, precipitation and clouds - parameters that hold significant public interest. To address this divergence, we introduce WeatherReal, a novel benchmark dataset for weather forecasting, derived from global near-surface in-situ observations. WeatherReal also features a publicly accessible quality control and evaluation framework. This paper details the sources and processing methodologies underlying the dataset, and further illustrates the advantage of in-situ observations in capturing hyper-local and extreme weather through comparative analyses and case studies. Using WeatherReal, we evaluated several data-driven models and compared them with leading numerical models. Our work aims to advance the AI-based weather forecasting research towards a more application-focused and operation-ready approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WeatherReal:基于现场观测的天气模式评估基准
近年来,基于人工智能的天气预报模型已经与数值天气预报系统不相上下,甚至优于数值天气预报系统。然而,这些模型大多是在ERA5等再分析数据集上进行训练和评估的。这些数据集是数值模式的产物,在一些关键变量上,如近地面温度、风、降水和云等公众非常关心的参数,往往与实际观测结果有很大出入。为了解决这种偏差,我们引入了 WeatherReal,这是一个用于天气预报的新型基准数据集,由全球近地面原位观测数据衍生而来。WeatherReal 还具有可公开访问的质量控制和评估框架。本文详细介绍了数据集的来源和处理方法,并通过比较分析和案例研究进一步说明了原位观测在捕捉超本地和极端天气方面的优势。利用 WeatherReal,我们评估了几个数据驱动模型,并将它们与主要的数值模型进行了比较。我们的工作旨在推进基于人工智能的天气预报研究,使其更加注重应用和操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1