Optimal trajectories for Bayesian olfactory search in the low information limit and beyond

Robin A. Heinonen, Luca Biferale, Antonio Celani, Massimo Vergassola
{"title":"Optimal trajectories for Bayesian olfactory search in the low information limit and beyond","authors":"Robin A. Heinonen, Luca Biferale, Antonio Celani, Massimo Vergassola","doi":"arxiv-2409.11343","DOIUrl":null,"url":null,"abstract":"In turbulent flows, tracking the source of a passive scalar cue requires\nexploiting the limited information that can be gleaned from rare, randomized\nencounters with the cue. When crafting a search policy, the most challenging\nand important decision is what to do in the absence of an encounter. In this\nwork, we perform high-fidelity direct numerical simulations of a turbulent flow\nwith a stationary source of tracer particles, and obtain quasi-optimal policies\n(in the sense of minimal average search time) with respect to the empirical\nencounter statistics. We study the trajectories under such policies and compare\nthe results to those of the infotaxis heuristic. In the presence of a strong\nmean wind, the optimal motion in the absence of an encounter is zigzagging\n(akin to the well-known insect behavior ``casting'') followed by a return to\nthe starting location. The zigzag motion generates characteristic $t^{1/2}$\nscaling of the rms displacement envelope. By passing to the limit where the\nprobability of detection vanishes, we connect these results to the classical\nlinear search problem and derive an estimate of the tail of the arrival time\npdf as a stretched exponential $p(T)\\sim \\exp(-k\\sqrt{T})$ for some $k>0,$ in\nagreement with Monte Carlo results. We also discuss what happens as the wind\nspeed becomes smaller.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In turbulent flows, tracking the source of a passive scalar cue requires exploiting the limited information that can be gleaned from rare, randomized encounters with the cue. When crafting a search policy, the most challenging and important decision is what to do in the absence of an encounter. In this work, we perform high-fidelity direct numerical simulations of a turbulent flow with a stationary source of tracer particles, and obtain quasi-optimal policies (in the sense of minimal average search time) with respect to the empirical encounter statistics. We study the trajectories under such policies and compare the results to those of the infotaxis heuristic. In the presence of a strong mean wind, the optimal motion in the absence of an encounter is zigzagging (akin to the well-known insect behavior ``casting'') followed by a return to the starting location. The zigzag motion generates characteristic $t^{1/2}$ scaling of the rms displacement envelope. By passing to the limit where the probability of detection vanishes, we connect these results to the classical linear search problem and derive an estimate of the tail of the arrival time pdf as a stretched exponential $p(T)\sim \exp(-k\sqrt{T})$ for some $k>0,$ in agreement with Monte Carlo results. We also discuss what happens as the wind speed becomes smaller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低信息极限及以上贝叶斯嗅觉搜索的最佳轨迹
在湍流中,追踪被动标度线索的源头需要利用从与线索的罕见随机相遇中收集到的有限信息。在制定搜索策略时,最具挑战性和最重要的决策是在没有相遇的情况下该如何处理。在这项工作中,我们对带有静止示踪粒子源的湍流进行了高保真直接数值模拟,并获得了与经验相遇统计相关的准最优策略(在平均搜索时间最小的意义上)。我们研究了这种策略下的轨迹,并将结果与 infotaxis 启发式的结果进行了比较。在有强平均风的情况下,没有遭遇时的最佳运动是之字形运动(类似于著名的昆虫行为 "投掷"),然后返回起始位置。之字形运动会使均方根位移包络产生特征性的$t^{1/2}$缩放。通过检测概率消失的极限,我们将这些结果与经典的线性搜索问题联系起来,并推导出到达时间pdf尾部的估计值为拉伸指数$p(T)\sim \exp(-k\sqrt{T})$ 对于某个$k>0,与蒙特卡罗结果一致。我们还讨论了风速变小时发生的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Additive-feature-attribution methods: a review on explainable artificial intelligence for fluid dynamics and heat transfer Direct and inverse cascades scaling in real shell models of turbulence A new complex fluid flow phenomenon: Bubbles-on-a-String Long-distance Liquid Transport Along Fibers Arising From Plateau-Rayleigh Instability Symmetry groups and invariant solutions of plane Poiseuille flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1