uniGasFoam: a particle-based OpenFOAM solver for multiscale rarefied gas flows

Nikos Vasileiadis, Giorgos Tatsios, Craig White, Duncan A. Lockerby, Matthew K. Borg, Livio Gibelli
{"title":"uniGasFoam: a particle-based OpenFOAM solver for multiscale rarefied gas flows","authors":"Nikos Vasileiadis, Giorgos Tatsios, Craig White, Duncan A. Lockerby, Matthew K. Borg, Livio Gibelli","doi":"arxiv-2409.10288","DOIUrl":null,"url":null,"abstract":"This paper presents uniGasFoam, an open-source particle-based solver for\nmultiscale rarefied gas flow simulations, which has been developed within the\nwell-established OpenFOAM framework, and is an extension of the direct\nsimulation Monte Carlo (DSMC) solver dsmcFoam+. The developed solver addresses\nthe coupling challenges inherent in hybrid continuum-particle methods,\noriginating from the disparate nature of finite-volume (FV) solvers found in\ncomputational fluid dynamics (CFD) software and DSMC particle solvers. This is\nachieved by employing alternative stochastic particle methods, resembling DSMC,\nto tackle the continuum limit. The uniGasFoam particle-particle coupling\nproduces a numerical implementation that is simpler and more robust, faster in\nmany steady-state flows, and more scalable for transient flows compared to\nconventional continuum-particle coupling. The presented framework is unified\nand generic, and can couple DSMC with stochastic particle (SP) and unified\nstochastic particle (USP) methods, or be employed for pure DSMC, SP, and USP\ngas simulations. To enhance user experience, optimise computational resources\nand minimise user error, advanced adaptive algorithms such as transient\nadaptive sub-cells, non-uniform cell weighting, and adaptive global time\nstepping have been integrated into uniGasFoam. In this paper, the hybrid\nUSP-DSMC module of uniGasFoam is rigorously validated through multiple\nbenchmark cases, consistently showing excellent agreement with pure DSMC,\nhybrid CFD-DSMC, and literature results. Notably, uniGasFoam achieves\nsignificant computational gains compared to pure dsmcFoam+ simulations,\nrendering it a robust computational tool well-suited for addressing multiscale\nrarefied gas flows of engineering importance.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents uniGasFoam, an open-source particle-based solver for multiscale rarefied gas flow simulations, which has been developed within the well-established OpenFOAM framework, and is an extension of the direct simulation Monte Carlo (DSMC) solver dsmcFoam+. The developed solver addresses the coupling challenges inherent in hybrid continuum-particle methods, originating from the disparate nature of finite-volume (FV) solvers found in computational fluid dynamics (CFD) software and DSMC particle solvers. This is achieved by employing alternative stochastic particle methods, resembling DSMC, to tackle the continuum limit. The uniGasFoam particle-particle coupling produces a numerical implementation that is simpler and more robust, faster in many steady-state flows, and more scalable for transient flows compared to conventional continuum-particle coupling. The presented framework is unified and generic, and can couple DSMC with stochastic particle (SP) and unified stochastic particle (USP) methods, or be employed for pure DSMC, SP, and USP gas simulations. To enhance user experience, optimise computational resources and minimise user error, advanced adaptive algorithms such as transient adaptive sub-cells, non-uniform cell weighting, and adaptive global time stepping have been integrated into uniGasFoam. In this paper, the hybrid USP-DSMC module of uniGasFoam is rigorously validated through multiple benchmark cases, consistently showing excellent agreement with pure DSMC, hybrid CFD-DSMC, and literature results. Notably, uniGasFoam achieves significant computational gains compared to pure dsmcFoam+ simulations, rendering it a robust computational tool well-suited for addressing multiscale rarefied gas flows of engineering importance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
uniGasFoam:基于粒子的 OpenFOAM 多尺度稀薄气体流求解器
本文介绍了基于粒子的多尺度稀薄气体流模拟开源求解器 uniGasFoam,它是在成熟的 OpenFOAM 框架内开发的,是直接模拟蒙特卡罗(DSMC)求解器 dsmcFoam+ 的扩展。所开发的求解器解决了连续体-粒子混合方法中固有的耦合难题,这些难题源于计算流体动力学(CFD)软件中的有限体积(FV)求解器和 DSMC 粒子求解器的不同性质。为此,我们采用了类似 DSMC 的其他随机粒子方法来解决连续极限问题。与传统的连续体-粒子耦合相比,uniGasFoam 粒子-粒子耦合产生的数值实现更简单、更稳健,在许多稳态流中速度更快,在瞬态流中可扩展性更好。所提出的框架具有统一性和通用性,可将 DSMC 与随机粒子(SP)和统一随机粒子(USP)方法耦合,也可用于纯 DSMC、SP 和 USP 气体模拟。为了提高用户体验、优化计算资源并最大限度地减少用户误差,uniGasFoam 中集成了先进的自适应算法,如瞬态自适应子单元、非均匀单元加权和自适应全局时间裁剪。本文通过多个基准案例对 uniGasFoam 的混合USP-DSMC 模块进行了严格验证,结果与纯 DSMC、混合 CFD-DSMC 和文献结果一致。值得注意的是,uniGasFoam 比纯 dsmcFoam+ 仿真获得了显著的计算增益,使其成为一种强大的计算工具,非常适合处理具有重要工程意义的多尺度混合气体流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Additive-feature-attribution methods: a review on explainable artificial intelligence for fluid dynamics and heat transfer Direct and inverse cascades scaling in real shell models of turbulence A new complex fluid flow phenomenon: Bubbles-on-a-String Long-distance Liquid Transport Along Fibers Arising From Plateau-Rayleigh Instability Symmetry groups and invariant solutions of plane Poiseuille flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1