Advancing flight physics through natural adaptation and animal learning

Ariane Gayout, David Lentink
{"title":"Advancing flight physics through natural adaptation and animal learning","authors":"Ariane Gayout, David Lentink","doi":"arxiv-2409.10067","DOIUrl":null,"url":null,"abstract":"Fluid dynamics, and flight in particular, is a domain where organisms\nchallenge our understanding of its physics. Integrating the current knowledge\nof animal flight, we propose to revisit the use of live animals to study\nphysical phenomena. After a short description of the physics of flight, we\nexamine the broad literature on animal flight focusing on studies of living\nanimals. We start out reviewing the diverse animal species studied so far and\nthen focus on the experimental techniques used to study them quantitatively.\nOur network analysis reveals how the three clades of animals performing powered\nflight - insects, birds and bats - are studied using substantially different\ncombinations of measurement techniques. We then combine these insights with a\nnew paradigm for increasing our physical understanding of flight. This paradigm\nrelies on the concept of Animal Learning, where animals are used as probes to\nstudy fluid phenomena and variables involved in flight, harnessing their\nnatural adaptability.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"2020 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fluid dynamics, and flight in particular, is a domain where organisms challenge our understanding of its physics. Integrating the current knowledge of animal flight, we propose to revisit the use of live animals to study physical phenomena. After a short description of the physics of flight, we examine the broad literature on animal flight focusing on studies of living animals. We start out reviewing the diverse animal species studied so far and then focus on the experimental techniques used to study them quantitatively. Our network analysis reveals how the three clades of animals performing powered flight - insects, birds and bats - are studied using substantially different combinations of measurement techniques. We then combine these insights with a new paradigm for increasing our physical understanding of flight. This paradigm relies on the concept of Animal Learning, where animals are used as probes to study fluid phenomena and variables involved in flight, harnessing their natural adaptability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过自然适应和动物学习推进飞行物理学的发展
流体动力学,尤其是飞行,是生物挑战我们对其物理学理解的一个领域。结合目前对动物飞行的了解,我们建议重新审视利用活体动物研究物理现象的问题。在对飞行物理学进行简短描述之后,我们以活体动物研究为重点,对有关动物飞行的大量文献进行了审查。我们的网络分析揭示了昆虫、鸟类和蝙蝠这三类动力飞行动物是如何使用截然不同的测量技术组合进行研究的。我们的网络分析揭示了昆虫、鸟类和蝙蝠这三类动力飞行动物是如何使用截然不同的测量技术组合进行研究的。这种范式基于动物学习的概念,即利用动物的自然适应能力,将动物作为探针来研究飞行中涉及的流体现象和变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Additive-feature-attribution methods: a review on explainable artificial intelligence for fluid dynamics and heat transfer Direct and inverse cascades scaling in real shell models of turbulence A new complex fluid flow phenomenon: Bubbles-on-a-String Long-distance Liquid Transport Along Fibers Arising From Plateau-Rayleigh Instability Symmetry groups and invariant solutions of plane Poiseuille flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1