Valid Credible Ellipsoids for Linear Functionals by a Renormalized Bernstein-von Mises Theorem

Gustav Rømer
{"title":"Valid Credible Ellipsoids for Linear Functionals by a Renormalized Bernstein-von Mises Theorem","authors":"Gustav Rømer","doi":"arxiv-2409.10947","DOIUrl":null,"url":null,"abstract":"We consider a semi-parametric Gaussian regression model, equipped with a\nhigh-dimensional Gaussian prior. We address the frequentist validity of\nposterior credible sets for a vector of linear functionals. We specify conditions for a 'renormalized' Bernstein-von Mises theorem (BvM),\nwhere the posterior, centered at its mean, and the posterior mean, centered at\nthe ground truth, have the same normal approximation. This requires neither a\nsolution to the information equation nor a $\\sqrt{N}$-consistent estimator. We show that our renormalized BvM implies that a credible ellipsoid,\nspecified by the mean and variance of the posterior, is an asymptotic\nconfidence set. For a single linear functional, we identify such a credible\nellipsoid with a symmetric credible interval around the posterior mean. We\nbound the diameter. We check the conditions for Darcy's problem, where the information equation\nhas no solution in natural settings. For the Schr\\\"odinger problem, we recover\nan efficient semi-parametric BvM from our renormalized BvM.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a semi-parametric Gaussian regression model, equipped with a high-dimensional Gaussian prior. We address the frequentist validity of posterior credible sets for a vector of linear functionals. We specify conditions for a 'renormalized' Bernstein-von Mises theorem (BvM), where the posterior, centered at its mean, and the posterior mean, centered at the ground truth, have the same normal approximation. This requires neither a solution to the information equation nor a $\sqrt{N}$-consistent estimator. We show that our renormalized BvM implies that a credible ellipsoid, specified by the mean and variance of the posterior, is an asymptotic confidence set. For a single linear functional, we identify such a credible ellipsoid with a symmetric credible interval around the posterior mean. We bound the diameter. We check the conditions for Darcy's problem, where the information equation has no solution in natural settings. For the Schr\"odinger problem, we recover an efficient semi-parametric BvM from our renormalized BvM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过重规范化伯恩斯坦-冯-米塞斯定理实现线性函数的有效可信椭圆形
我们考虑了一个半参数高斯回归模型,该模型配备了一个高维高斯先验。我们探讨了线性函数向量的后验可信集的常量有效性。我们明确了 "重归一化 "伯恩斯坦-冯-米塞斯定理(BvM)的条件,即以其均值为中心的后验均值和以地面实况为中心的后验均值具有相同的正态近似值。这既不需要对信息方程求解,也不需要$\sqrt{N}$一致的估计器。我们证明,我们的重归一化 BvM 意味着由后验均值和方差指定的可信椭圆是一个渐近可信集。对于单一线性函数,我们将这样一个可信椭圆与后验均值周围的对称可信区间联系起来。确定直径我们检验了达西问题的条件,在达西问题中,信息方程在自然环境下没有解。对于薛定谔问题,我们从重新规范化的 BvM 中恢复了一个高效的半参数 BvM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclicity Analysis of the Ornstein-Uhlenbeck Process Linear hypothesis testing in high-dimensional heteroscedastics via random integration Asymptotics for conformal inference Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition Incremental effects for continuous exposures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1