A novel organic fluorescent material: synthesis, structures and optical response properties

IF 1.7 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Chemical Sciences Pub Date : 2024-09-17 DOI:10.1007/s12039-024-02298-y
Ying-Li Li, Qing-Hui Guo, Dong-En Wu
{"title":"A novel organic fluorescent material: synthesis, structures and optical response properties","authors":"Ying-Li Li,&nbsp;Qing-Hui Guo,&nbsp;Dong-En Wu","doi":"10.1007/s12039-024-02298-y","DOIUrl":null,"url":null,"abstract":"<div><p>A novel organic fluorescent material, namely 2,6-di([1,1'-biphenyl]-4-yl)-4-(perfluorophenyl)hepta-1,6-diene-1,1,7,7-tetracarbonitrile (DBPDT), has been synthesized and characterized in this study. Due to the special molecular packing mode in the solid state, J-aggregation, DBPDT displayed red-shifted emission compared with that in dilute solution. In this study, it was found that DBPDT showed aggregation-induced enhanced emission (AIEE) and solvatochromic properties. Assisted by quantum chemistry calculations, optical response properties to external electric field (EEF) were investigated, where it was found that external electric field (EEF) would affect the structures and optical properties of DBPDT distinctly. The optical response characteristics of DBPDT can provide an alternative structure for constructing advanced photoelectric functional materials.</p><h3>Graphical abstract</h3><p>A novel organic fluorescent material, namely 2,6-di([1,1'-biphenyl]-4-yl)-4-(perfluorophenyl)hepta-1,6-diene-1,1,7,7-tetracarbonitrile (DBPDT), has been synthesized and characterized in this study. Assisted by quantum chemistry calculations, optical response properties to external electric field (EEF) were investigated, where it was found that external electric field (EEF) would affect the structures and optical properties of DBPDT distinctly.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02298-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel organic fluorescent material, namely 2,6-di([1,1'-biphenyl]-4-yl)-4-(perfluorophenyl)hepta-1,6-diene-1,1,7,7-tetracarbonitrile (DBPDT), has been synthesized and characterized in this study. Due to the special molecular packing mode in the solid state, J-aggregation, DBPDT displayed red-shifted emission compared with that in dilute solution. In this study, it was found that DBPDT showed aggregation-induced enhanced emission (AIEE) and solvatochromic properties. Assisted by quantum chemistry calculations, optical response properties to external electric field (EEF) were investigated, where it was found that external electric field (EEF) would affect the structures and optical properties of DBPDT distinctly. The optical response characteristics of DBPDT can provide an alternative structure for constructing advanced photoelectric functional materials.

Graphical abstract

A novel organic fluorescent material, namely 2,6-di([1,1'-biphenyl]-4-yl)-4-(perfluorophenyl)hepta-1,6-diene-1,1,7,7-tetracarbonitrile (DBPDT), has been synthesized and characterized in this study. Assisted by quantum chemistry calculations, optical response properties to external electric field (EEF) were investigated, where it was found that external electric field (EEF) would affect the structures and optical properties of DBPDT distinctly.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型有机荧光材料:合成、结构和光学响应特性
本研究合成了一种新型有机荧光材料,即 2,6-二([1,1'-联苯]-4-基)-4-(全氟苯基)庚-1,6-二烯-1,1,7,7-四甲腈(DBPDT),并对其进行了表征。由于固态下特殊的分子堆积模式--J-聚集,DBPDT 与稀溶液相比显示出红移发射。研究发现,DBPDT 具有聚集诱导增强发射(AIEE)和溶解变色特性。在量子化学计算的辅助下,研究了DBPDT对外部电场(EEF)的光学响应特性,发现外部电场(EEF)会对DBPDT的结构和光学特性产生明显的影响。图文摘要 本研究合成并表征了一种新型有机荧光材料,即 2,6-二([1,1'-联苯]-4-基)-4-(全氟苯基)庚-1,6-二烯-1,1,7,7-四腈(DBPDT)。在量子化学计算的辅助下,研究了外电场(EEF)的光学响应特性,发现外电场(EEF)会对 DBPDT 的结构和光学特性产生明显的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Sciences
Journal of Chemical Sciences CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
5.90%
发文量
107
审稿时长
1 months
期刊介绍: Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.
期刊最新文献
Functionalized graphene nanofiber-based low-cost composite membrane for vanadium redox flow battery applications Synthesis and characterization of a new coordination polymer of copper (II): Catalytic application for reductive degradation of dyes under dark Copper-catalyzed synthesis of 3-substituted isocoumarins from 2-halogenation benzoic acid and alkynes Microfluidic synthesis of calcium tungstate CaWO4 Cu/H–ZSM-5: A highly active and selective catalyst for the production of γ-valerolactone from biomass-derived levulinic acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1