Dan Wang, Yu-Ting Tang, Jun He, Darren Robinson, Wanqin Yang
{"title":"A mini-review for identifying future directions in modelling heating values for sustainable waste management","authors":"Dan Wang, Yu-Ting Tang, Jun He, Darren Robinson, Wanqin Yang","doi":"10.1177/0734242x241271042","DOIUrl":null,"url":null,"abstract":"Global estimations suggest energy content within municipal solid waste (MSW) is underutilized, compromising efforts to reduce fossil CO<jats:sub>2</jats:sub> emissions and missing the opportunities for pursuing circular economy in energy consumption. The energy content of the MSW, represented by heating values (HVs), is a major determinant for the suitability of incinerating the waste for energy and managing waste flows. Literature reveals limitations in traditional statistical HV modelling approaches, which assume a linear and additive relationship between physiochemical properties of MSW samples and their HVs, as well as overlook the impact of non-combustible substances in MSW mixtures on energy harvest. Artificial intelligence (AI)-based models show promise but pose challenges in interpretation based on established combustion theories. From the variable selection perspectives, using MSW physical composition categories as explanatory variables neglects intra-category variations in energy contents while applying environmental or socio-economic factors emerges to address waste composition changes as society develops. The article contributes by showing to professionals and modellers that leveraging AI technology and incorporating societal and environmental factors are meaningful directions for advancing HV prediction in waste management. These approaches promise more precise evaluations of incinerating waste for energy and enhancing sustainable waste management practices.","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":"216 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242x241271042","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Global estimations suggest energy content within municipal solid waste (MSW) is underutilized, compromising efforts to reduce fossil CO2 emissions and missing the opportunities for pursuing circular economy in energy consumption. The energy content of the MSW, represented by heating values (HVs), is a major determinant for the suitability of incinerating the waste for energy and managing waste flows. Literature reveals limitations in traditional statistical HV modelling approaches, which assume a linear and additive relationship between physiochemical properties of MSW samples and their HVs, as well as overlook the impact of non-combustible substances in MSW mixtures on energy harvest. Artificial intelligence (AI)-based models show promise but pose challenges in interpretation based on established combustion theories. From the variable selection perspectives, using MSW physical composition categories as explanatory variables neglects intra-category variations in energy contents while applying environmental or socio-economic factors emerges to address waste composition changes as society develops. The article contributes by showing to professionals and modellers that leveraging AI technology and incorporating societal and environmental factors are meaningful directions for advancing HV prediction in waste management. These approaches promise more precise evaluations of incinerating waste for energy and enhancing sustainable waste management practices.
期刊介绍:
Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.