Machine learning-based prediction of CoCrFeNiMo0.2 high-entropy alloy weld bead dimensions in wire arc additive manufacturing

IF 3.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Communications Pub Date : 2024-09-07 DOI:10.1016/j.mtcomm.2024.110359
Qingkai Shen, Jiaxiang Xue, Zehong Zheng, Xiaoyan Yu, Ning Ou
{"title":"Machine learning-based prediction of CoCrFeNiMo0.2 high-entropy alloy weld bead dimensions in wire arc additive manufacturing","authors":"Qingkai Shen, Jiaxiang Xue, Zehong Zheng, Xiaoyan Yu, Ning Ou","doi":"10.1016/j.mtcomm.2024.110359","DOIUrl":null,"url":null,"abstract":"Wire arc additive manufacturing (WAAM) is a promising method to fabricate large-sized components. By adjusting WAAM process parameters, dimensions of WAAM-produced weld beads can be optimized. To this end, the current study adopted the cold metal transfer (CMT) process to produce different-sized beads of CoCrFeNiMo high-entropy alloy (HEA), varying WAAM parameters and linking them with the formed bead dimensions and bead-substrate contact angles. Three machine learning algorithms, namely back propagation neural network (BPNN), support vector regression (SVR), and random forest regression (RFR), were used to predict bead dimensions and contact angles under various WAAM parameters. The BPNN model has great prediction performance in the height of beads. The SVR model has the highest accuracy in predicting the width and cross-sectional area of beads. The RFR model outperforms the other two models in contact angles prediction. This work not only provides a reference for the WAAM of HEAs, but also provides new ideas for predicting bead size in WAAM.","PeriodicalId":18477,"journal":{"name":"Materials Today Communications","volume":"115 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtcomm.2024.110359","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wire arc additive manufacturing (WAAM) is a promising method to fabricate large-sized components. By adjusting WAAM process parameters, dimensions of WAAM-produced weld beads can be optimized. To this end, the current study adopted the cold metal transfer (CMT) process to produce different-sized beads of CoCrFeNiMo high-entropy alloy (HEA), varying WAAM parameters and linking them with the formed bead dimensions and bead-substrate contact angles. Three machine learning algorithms, namely back propagation neural network (BPNN), support vector regression (SVR), and random forest regression (RFR), were used to predict bead dimensions and contact angles under various WAAM parameters. The BPNN model has great prediction performance in the height of beads. The SVR model has the highest accuracy in predicting the width and cross-sectional area of beads. The RFR model outperforms the other two models in contact angles prediction. This work not only provides a reference for the WAAM of HEAs, but also provides new ideas for predicting bead size in WAAM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的线弧快速成型制造中 CoCrFeNiMo0.2 高熵合金焊缝尺寸预测
线弧增材制造(WAAM)是一种制造大型部件的可行方法。通过调整 WAAM 工艺参数,可以优化 WAAM 生产的焊珠尺寸。为此,本研究采用冷金属转移(CMT)工艺生产不同尺寸的 CoCrFeNiMo 高熵合金(HEA)焊珠,改变 WAAM 参数,并将其与成型焊珠尺寸和焊珠-基体接触角联系起来。研究采用了三种机器学习算法,即反向传播神经网络(BPNN)、支持向量回归(SVR)和随机森林回归(RFR),来预测不同 WAAM 参数下的微珠尺寸和接触角。BPNN 模型对珠子的高度具有很好的预测性能。SVR 模型在预测珠子的宽度和横截面积方面精度最高。RFR 模型在接触角预测方面优于其他两个模型。这项工作不仅为 HEA 的 WAAM 提供了参考,还为在 WAAM 中预测珠子尺寸提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Communications
Materials Today Communications Materials Science-General Materials Science
CiteScore
5.20
自引率
5.30%
发文量
1783
审稿时长
51 days
期刊介绍: Materials Today Communications is a primary research journal covering all areas of materials science. The journal offers the materials community an innovative, efficient and flexible route for the publication of original research which has not found the right home on first submission.
期刊最新文献
Influences of fiber orientation and process parameters on diamond wire sawn surface characteristics of 2.5D Cf/SiC composites Study on microstructure and corrosion behavior of T-joints of 2A12 and 2A97 aluminum alloys by FSW Efficient degradation of tetracycline by cobalt ferrite modified alkaline solution nanofibrous Ti3C2Tx MXene activated peroxymonosulfate system: Mechanism analysis and pathway Insights into effects of Fe doping on phase stability, martensitic transformation, and magnetic properties in Ni-Mn-Ti-Fe all-d-metal Heusler alloys Evolution of microstructure and mechanical properties of electroplated nanocrystalline Ni–Co coating during heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1