{"title":"Advances in light-activated shape memory polymer: A brief review","authors":"K.Y. Shen, X.J. Wang, H.J. Chen","doi":"10.1016/j.mtcomm.2024.110247","DOIUrl":null,"url":null,"abstract":"Light-activated shape memory materials are rapidly developing and widely utilized in various fields such as Micro light drive, biomedicine and space technology in the past few years since light stimulation offers greater accuracy and speed compared to other forms of stimulation. By manipulating the wavelength, intensity, direction, and other parameters of the incident light, intelligent control over light-activated materials can be achieved. This paper provides a comprehensive overview of the current research status in the field of intelligent light-activated shape memory materials. It systematically presents the corresponding mechanisms, performance characteristics, applications, advantages, and disadvantages of these materials to demonstrate their research progress. Furthermore, this paper briefly outlines future prospects for intelligent light-activated shape memory materials and analyzes potential directions for future development.","PeriodicalId":18477,"journal":{"name":"Materials Today Communications","volume":"46 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtcomm.2024.110247","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Light-activated shape memory materials are rapidly developing and widely utilized in various fields such as Micro light drive, biomedicine and space technology in the past few years since light stimulation offers greater accuracy and speed compared to other forms of stimulation. By manipulating the wavelength, intensity, direction, and other parameters of the incident light, intelligent control over light-activated materials can be achieved. This paper provides a comprehensive overview of the current research status in the field of intelligent light-activated shape memory materials. It systematically presents the corresponding mechanisms, performance characteristics, applications, advantages, and disadvantages of these materials to demonstrate their research progress. Furthermore, this paper briefly outlines future prospects for intelligent light-activated shape memory materials and analyzes potential directions for future development.
期刊介绍:
Materials Today Communications is a primary research journal covering all areas of materials science. The journal offers the materials community an innovative, efficient and flexible route for the publication of original research which has not found the right home on first submission.