{"title":"In Vitro In Silico Screening Strategy and Mechanism of Novel Tyrosinase Inhibitory Peptides from Nacre of Hyriopsis cumingii","authors":"Haisheng Lin, Fei Li, Jiaao Kang, Shaohe Xie, Xiaoming Qin, Jialong Gao, Zhongqin Chen, Wenhong Cao, Huina Zheng, Wenkui Song","doi":"10.3390/md22090420","DOIUrl":null,"url":null,"abstract":"For thousands of years, pearl and nacre powders have been important traditional Chinese medicines known for their skin whitening effects. To prepare the enzymatic hydrolysates of Hyriopsis cumingii nacre powder (NP-HCH), complex enzymatic hydrolysis by pineapple protease and of neutral protease was carried out after the powder was pre-treated with a high-temperature and high-pressure method. The peptides were identified using LC-MS/MS and picked out through molecular docking and molecular dynamics simulations. Subsequently, the tyrosinase inhibitory and antioxidant properties of novel tyrosinase inhibitory peptides were investigated in vitro. In addition, the enzymatic activity of tyrosinase in B16F10 cells as well as melanin content and antioxidant enzyme levels were also examined. The results showed that a tyosinase inhibitory peptide (Tyr-Pro-Asn-Pro-Tyr, YPNPY) with an efficient IC50 value of 0.545 ± 0.028 mM was identified. The in vitro interaction results showed that YPNPY is a reversible competitive inhibitor of tyrosinase, suggesting that it binds to the free enzyme. The B16F10 cell whitening test revealed that YPNPY can reduce the melanin content of B16F10 cells by directly inhibiting the activity of intracellular tyrosinase. Additionally, it indirectly affects melanin production by acting as an antioxidant. These results suggest that YPNPY could be widely used as a tyrosinase inhibitor in whitening foods and drugs.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"3 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22090420","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
For thousands of years, pearl and nacre powders have been important traditional Chinese medicines known for their skin whitening effects. To prepare the enzymatic hydrolysates of Hyriopsis cumingii nacre powder (NP-HCH), complex enzymatic hydrolysis by pineapple protease and of neutral protease was carried out after the powder was pre-treated with a high-temperature and high-pressure method. The peptides were identified using LC-MS/MS and picked out through molecular docking and molecular dynamics simulations. Subsequently, the tyrosinase inhibitory and antioxidant properties of novel tyrosinase inhibitory peptides were investigated in vitro. In addition, the enzymatic activity of tyrosinase in B16F10 cells as well as melanin content and antioxidant enzyme levels were also examined. The results showed that a tyosinase inhibitory peptide (Tyr-Pro-Asn-Pro-Tyr, YPNPY) with an efficient IC50 value of 0.545 ± 0.028 mM was identified. The in vitro interaction results showed that YPNPY is a reversible competitive inhibitor of tyrosinase, suggesting that it binds to the free enzyme. The B16F10 cell whitening test revealed that YPNPY can reduce the melanin content of B16F10 cells by directly inhibiting the activity of intracellular tyrosinase. Additionally, it indirectly affects melanin production by acting as an antioxidant. These results suggest that YPNPY could be widely used as a tyrosinase inhibitor in whitening foods and drugs.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.