Fuzzy $$\alpha $$ -Cut Lasso for Handling Diverse Data Types in LR-Fuzzy Outcomes

IF 3.6 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Fuzzy Systems Pub Date : 2024-09-15 DOI:10.1007/s40815-024-01825-w
Hyoshin Kim, Hye-Young Jung
{"title":"Fuzzy $$\\alpha $$ -Cut Lasso for Handling Diverse Data Types in LR-Fuzzy Outcomes","authors":"Hyoshin Kim, Hye-Young Jung","doi":"10.1007/s40815-024-01825-w","DOIUrl":null,"url":null,"abstract":"<p>Regularization techniques have been widely applied in the context of fuzzy regression models, primarily tailored to triangular fuzzy outcomes. While this approach effectively handles fuzzy data in explicit interval data formats, its adaptability to various data types commonly encountered in practical applications is limited. To address this gap, we introduce the new fuzzy <span>\\(\\alpha \\)</span>-cut Lasso, extending the classical Lasso to encompass two essential data formats for fuzzy outcomes: explicit interval data formats and implicit formats with multiple measurements. Leveraging <span>\\(\\alpha \\)</span>-cuts, this model can extract richer insights from the data regarding the shape of fuzzy numbers. The model shows flexibility in handling fuzzy outputs and fuzzy regression coefficients of the LR-type, encompassing specific examples such as triangular and Gaussian types.</p>","PeriodicalId":14056,"journal":{"name":"International Journal of Fuzzy Systems","volume":"20 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40815-024-01825-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Regularization techniques have been widely applied in the context of fuzzy regression models, primarily tailored to triangular fuzzy outcomes. While this approach effectively handles fuzzy data in explicit interval data formats, its adaptability to various data types commonly encountered in practical applications is limited. To address this gap, we introduce the new fuzzy \(\alpha \)-cut Lasso, extending the classical Lasso to encompass two essential data formats for fuzzy outcomes: explicit interval data formats and implicit formats with multiple measurements. Leveraging \(\alpha \)-cuts, this model can extract richer insights from the data regarding the shape of fuzzy numbers. The model shows flexibility in handling fuzzy outputs and fuzzy regression coefficients of the LR-type, encompassing specific examples such as triangular and Gaussian types.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于处理 LR-Fuzzy 结果中不同数据类型的模糊 $$\alpha $$ -Cut Lasso
正则化技术已广泛应用于模糊回归模型,主要是针对三角模糊结果。虽然这种方法能有效处理显式区间数据格式中的模糊数据,但它对实际应用中常见的各种数据类型的适应性是有限的。为了弥补这一不足,我们引入了新的模糊(\α \)-切分套索,扩展了经典套索,使其涵盖了模糊结果的两种基本数据格式:显式区间数据格式和具有多重测量的隐式格式。利用(\(α\)-切分),该模型可以从数据中提取有关模糊数形状的更丰富的见解。该模型在处理 LR 类型的模糊输出和模糊回归系数时显示出灵活性,包括三角形和高斯类型等具体实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fuzzy Systems
International Journal of Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
7.80
自引率
9.30%
发文量
188
审稿时长
16 months
期刊介绍: The International Journal of Fuzzy Systems (IJFS) is an official journal of Taiwan Fuzzy Systems Association (TFSA) and is published semi-quarterly. IJFS will consider high quality papers that deal with the theory, design, and application of fuzzy systems, soft computing systems, grey systems, and extension theory systems ranging from hardware to software. Survey and expository submissions are also welcome.
期刊最新文献
Event-Based Finite-Time $$H_\infty $$ Security Control for Networked Control Systems with Deception Attacks A Distance-Based Approach to Fuzzy Cognitive Maps Using Pythagorean Fuzzy Sets Relaxed Stability and Non-weighted $$L_2$$ -Gain Analysis for Asynchronously Switched Polynomial Fuzzy Systems Nonsingular Fast Terminal Sliding Mode Control of Uncertain Robotic Manipulator System Based on Adaptive Fuzzy Wavelet Neural Network Efficient and Effective Anomaly Detection in Autonomous Vehicles: A Combination of Gradient Boosting and ANFIS Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1