Tao Zhang, Xiaogang Yang, Ruitao Lu, Xueli Xie, Siyu Wang, Shuang Su
{"title":"Context-Aware DGCN-Based Ship Formation Recognition in Remote Sensing Images","authors":"Tao Zhang, Xiaogang Yang, Ruitao Lu, Xueli Xie, Siyu Wang, Shuang Su","doi":"10.3390/rs16183435","DOIUrl":null,"url":null,"abstract":"Ship detection and formation recognition in remote sensing have increasingly garnered attention. However, research remains challenging due to arbitrary orientation, dense arrangement, and the complex background of ships. To enhance the analysis of ship situations in channels, we model the ships as the key points and propose a context-aware DGCN-based ship formation recognition method. First, we develop a center point-based ship detection subnetwork, which employs depth-separable convolution to reduce parameter redundancy and combines coordinate attention with an oriented response network to generate direction-invariant feature maps. The center point of each ship is predicted by regression of the offset, target scale, and angle to realize the ship detection. Then, we adopt the spatial similarity of the ship center points to cluster the ship group, utilizing the Delaunay triangulation method to establish the topological graph structure of the ship group. Finally, we design a context-aware Dense Graph Convolutional Network (DGCN) with graph structure to achieve formation recognition. Experimental results on HRSD2016 and SGF datasets demonstrate that the proposed method can detect arbitrarily oriented ships and identify formations, attaining state-of-the-art performance.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"20 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183435","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ship detection and formation recognition in remote sensing have increasingly garnered attention. However, research remains challenging due to arbitrary orientation, dense arrangement, and the complex background of ships. To enhance the analysis of ship situations in channels, we model the ships as the key points and propose a context-aware DGCN-based ship formation recognition method. First, we develop a center point-based ship detection subnetwork, which employs depth-separable convolution to reduce parameter redundancy and combines coordinate attention with an oriented response network to generate direction-invariant feature maps. The center point of each ship is predicted by regression of the offset, target scale, and angle to realize the ship detection. Then, we adopt the spatial similarity of the ship center points to cluster the ship group, utilizing the Delaunay triangulation method to establish the topological graph structure of the ship group. Finally, we design a context-aware Dense Graph Convolutional Network (DGCN) with graph structure to achieve formation recognition. Experimental results on HRSD2016 and SGF datasets demonstrate that the proposed method can detect arbitrarily oriented ships and identify formations, attaining state-of-the-art performance.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.