Diego Tola, Frédéric Satgé, Ramiro Pillco Zolá, Humberto Sainz, Bruno Condori, Roberto Miranda, Elizabeth Yujra, Jorge Molina-Carpio, Renaud Hostache, Raúl Espinoza-Villar
{"title":"Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models","authors":"Diego Tola, Frédéric Satgé, Ramiro Pillco Zolá, Humberto Sainz, Bruno Condori, Roberto Miranda, Elizabeth Yujra, Jorge Molina-Carpio, Renaud Hostache, Raúl Espinoza-Villar","doi":"10.3390/rs16183456","DOIUrl":null,"url":null,"abstract":"This study assesses the relative performance of Sentinel-1 and -2 and their combination with topographic information for plow agricultural land soil salinity mapping. A learning database made of 255 soil samples’ electrical conductivity (EC) along with corresponding radar (R), optical (O), and topographic (T) information derived from Sentinel-2 (S2), Sentinel-1 (S1), and the SRTM digital elevation model, respectively, was used to train four machine learning models (Decision tree—DT, Random Forest—RF, Gradient Boosting—GB, Extreme Gradient Boosting—XGB). Each model was separately trained/validated for four scenarios based on four combinations of R, O, and T (R, O, R+O, R+O+T), with and without feature selection. The Recursive Feature Elimination with k-fold cross validation (RFEcv 10-fold) and the Variance Inflation Factor (VIF) were used for the feature selection process to minimize multicollinearity by selecting the most relevant features. The most reliable salinity estimates are obtained for the R+O+T scenario, considering the feature selection process, with R2 of 0.73, 0.74, 0.75, and 0.76 for DT, GB, RF, and XGB, respectively. Conversely, models based on R information led to unreliable soil salinity estimates due to the saturation of the C-band signal in plowed lands.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"3 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183456","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study assesses the relative performance of Sentinel-1 and -2 and their combination with topographic information for plow agricultural land soil salinity mapping. A learning database made of 255 soil samples’ electrical conductivity (EC) along with corresponding radar (R), optical (O), and topographic (T) information derived from Sentinel-2 (S2), Sentinel-1 (S1), and the SRTM digital elevation model, respectively, was used to train four machine learning models (Decision tree—DT, Random Forest—RF, Gradient Boosting—GB, Extreme Gradient Boosting—XGB). Each model was separately trained/validated for four scenarios based on four combinations of R, O, and T (R, O, R+O, R+O+T), with and without feature selection. The Recursive Feature Elimination with k-fold cross validation (RFEcv 10-fold) and the Variance Inflation Factor (VIF) were used for the feature selection process to minimize multicollinearity by selecting the most relevant features. The most reliable salinity estimates are obtained for the R+O+T scenario, considering the feature selection process, with R2 of 0.73, 0.74, 0.75, and 0.76 for DT, GB, RF, and XGB, respectively. Conversely, models based on R information led to unreliable soil salinity estimates due to the saturation of the C-band signal in plowed lands.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.