{"title":"DentAge: Deep learning for automated age prediction using panoramic dental X-ray images","authors":"Žiga Bizjak PhD, Tina Robič DMD","doi":"10.1111/1556-4029.15629","DOIUrl":null,"url":null,"abstract":"<p>Age estimation plays a crucial role in various fields, including forensic science and anthropology. This study aims to develop and validate DentAge, a deep-learning model for automated age prediction using panoramic dental X-ray images. DentAge was trained on a dataset comprising 21,007 panoramic dental X-ray images sourced from a private dental center in Slovenia. The dataset included subjects aged 4 to 97 years with various dental conditions. Transfer learning was employed, initializing the model with ImageNet weights and fine-tuning on the dental image dataset. The model was trained using stochastic gradient descent with momentum, and mean absolute error (MAE) served as the objective function. Across the test dataset, DentAge achieved an MAE of 3.12 years, demonstrating its efficacy in age prediction. Notably, the model performed well across different age groups, with MAEs ranging from 1.94 (age group [10–20]) to 13.40 years (age group [90–100]). Visual evaluation revealed factors contributing to prediction errors, including prosthetic restorations, tooth loss, and bone resorption. DentAge represents a significant advancement in automated age prediction within dentistry. The model's robust performance across diverse age groups and dental conditions underscores its potential utility in real-world scenarios. Our model will be accessible to the public for further adjustments and validation, ensuring DentAge's effectiveness and trustworthiness in practical scenarios.</p>","PeriodicalId":15743,"journal":{"name":"Journal of forensic sciences","volume":"69 6","pages":"2069-2074"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1556-4029.15629","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15629","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
Age estimation plays a crucial role in various fields, including forensic science and anthropology. This study aims to develop and validate DentAge, a deep-learning model for automated age prediction using panoramic dental X-ray images. DentAge was trained on a dataset comprising 21,007 panoramic dental X-ray images sourced from a private dental center in Slovenia. The dataset included subjects aged 4 to 97 years with various dental conditions. Transfer learning was employed, initializing the model with ImageNet weights and fine-tuning on the dental image dataset. The model was trained using stochastic gradient descent with momentum, and mean absolute error (MAE) served as the objective function. Across the test dataset, DentAge achieved an MAE of 3.12 years, demonstrating its efficacy in age prediction. Notably, the model performed well across different age groups, with MAEs ranging from 1.94 (age group [10–20]) to 13.40 years (age group [90–100]). Visual evaluation revealed factors contributing to prediction errors, including prosthetic restorations, tooth loss, and bone resorption. DentAge represents a significant advancement in automated age prediction within dentistry. The model's robust performance across diverse age groups and dental conditions underscores its potential utility in real-world scenarios. Our model will be accessible to the public for further adjustments and validation, ensuring DentAge's effectiveness and trustworthiness in practical scenarios.
期刊介绍:
The Journal of Forensic Sciences (JFS) is the official publication of the American Academy of Forensic Sciences (AAFS). It is devoted to the publication of original investigations, observations, scholarly inquiries and reviews in various branches of the forensic sciences. These include anthropology, criminalistics, digital and multimedia sciences, engineering and applied sciences, pathology/biology, psychiatry and behavioral science, jurisprudence, odontology, questioned documents, and toxicology. Similar submissions dealing with forensic aspects of other sciences and the social sciences are also accepted, as are submissions dealing with scientifically sound emerging science disciplines. The content and/or views expressed in the JFS are not necessarily those of the AAFS, the JFS Editorial Board, the organizations with which authors are affiliated, or the publisher of JFS. All manuscript submissions are double-blind peer-reviewed.