Interpreting prediction intervals and distributions for decoding biological generality in meta-analyses

Yefeng Yang, Daniel W. A. Noble, Alistair Senior, Malgorzata Lagisz, Shinichi Nakagawa
{"title":"Interpreting prediction intervals and distributions for decoding biological generality in meta-analyses","authors":"Yefeng Yang, Daniel W. A. Noble, Alistair Senior, Malgorzata Lagisz, Shinichi Nakagawa","doi":"10.1101/2024.09.10.612386","DOIUrl":null,"url":null,"abstract":"Despite the importance of identifying predictable regularities for knowledge transfer across contexts, the generality of ecological and evolutionary findings is yet to be systematically quantified. We present the first large-scale evaluation of generality using new metrics. By focusing on biologically relevant study levels, we show that generalization is not uncommon. Overall, 20% of meta-analyses will produce a non-zero effect 95% of the time in future replication studies with a 70% probability of observing meaningful effects in study-level contexts. We argue that the misconception that generalization is exceedingly rare is due to conflating within-study and between-study variances in ecological and evolutionary meta-analyses, which results from focusing too much on total heterogeneity (the sum of within-study and between-study variances). We encourage using our proposed approach to elucidate general patterns underpinning ecological and evolutionary phenomena.","PeriodicalId":501320,"journal":{"name":"bioRxiv - Ecology","volume":"210 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the importance of identifying predictable regularities for knowledge transfer across contexts, the generality of ecological and evolutionary findings is yet to be systematically quantified. We present the first large-scale evaluation of generality using new metrics. By focusing on biologically relevant study levels, we show that generalization is not uncommon. Overall, 20% of meta-analyses will produce a non-zero effect 95% of the time in future replication studies with a 70% probability of observing meaningful effects in study-level contexts. We argue that the misconception that generalization is exceedingly rare is due to conflating within-study and between-study variances in ecological and evolutionary meta-analyses, which results from focusing too much on total heterogeneity (the sum of within-study and between-study variances). We encourage using our proposed approach to elucidate general patterns underpinning ecological and evolutionary phenomena.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解读预测区间和分布,解码荟萃分析中的生物普遍性
尽管识别可预测的规律性对于跨环境的知识转移非常重要,但生态学和进化论发现的通用性仍有待系统地量化。我们首次使用新指标对通用性进行了大规模评估。通过关注与生物相关的研究水平,我们发现普遍性并不罕见。总体而言,在未来的复制研究中,20% 的荟萃分析在 95% 的情况下会产生非零效应,而在研究层面上观察到有意义效应的概率为 70%。我们认为,人们之所以误认为泛化现象极为罕见,是因为在生态和进化荟萃分析中混淆了研究内方差和研究间方差,这是因为我们过于关注总异质性(研究内方差和研究间方差之和)。我们鼓励使用我们提出的方法来阐明生态和进化现象的一般模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tomato spotted wilt virus facilitates non-vector spider mite species (Tetranychus urticae and Tetranychus evansi) on whole tomato plants Eco-toxicity of different agricultural tank-mix adjuvants Exploiting facial side similarities to improve AI-driven sea turtle photo-identification systems Monthly macroalgal surveys reveal a diverse and dynamic community in an urban intertidal zone Targeting the untargeted: Uncovering the chemical complexity of root exudates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1