{"title":"Stock closing price prediction based on ICEEMDAN-FA-BiLSTM–GM combined model","authors":"Lewei Xie, Ruibo Wan, Yuxin Wang, Fangjian Li","doi":"10.1007/s13042-024-02366-2","DOIUrl":null,"url":null,"abstract":"<p>The accuracy of stock price forecasting is of great significance in investment decision-making and risk management. However, the complexity and fluctuation of stock prices challenge the traditional forecasting methods to achieve the best accuracy. To improve the accuracy of stock price prediction, a sophisticated combination prediction method based on ICEEMDAN-FA-BiLSTM–GM has been proposed in this article. In this paper, a comprehensive and effective indicator system is constructed, covering 60 indicators such as traditional factors, market sentiment, macroeconomic indicators and company financial data, which affect stock prices. In the data preprocessing stage, in order to eliminate the influence of noise, the stock closing price series is first decomposed by using the ICEEMDAN method, which effectively divides them into high-frequency and low-frequency components according to their respective frequencies. Subsequently, LLE technique is used to narrow down the remaining indicators to obtain 9 narrowed features. Finally, each high-frequency subsequence is combined with all the dimensionality reduction features respectively to construct new indicator sets for input to the model. In the prediction stage, the hyperparameters of the prediction model for each subseries have been determined using the FA algorithm. The prediction has been carried out separately for the high-frequency and low-frequency components, employing the BiLSTM and GM prediction methods. Ultimately, the prediction results of each subseries have been superimposed to obtain the final stock price prediction value. In this paper, an empirical study was conducted using stock price data such as Shanghai composite index. The experimental results show that the established stock price prediction model based on ICEEMDAN-FA-BiLSTM–GM has obvious advantages in terms of prediction accuracy and stability compared with traditional methods and other combined prediction methods. This model can provide more accurate stock price prediction and promote the rationalization of investment decision and the accuracy of risk control.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"50 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02366-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The accuracy of stock price forecasting is of great significance in investment decision-making and risk management. However, the complexity and fluctuation of stock prices challenge the traditional forecasting methods to achieve the best accuracy. To improve the accuracy of stock price prediction, a sophisticated combination prediction method based on ICEEMDAN-FA-BiLSTM–GM has been proposed in this article. In this paper, a comprehensive and effective indicator system is constructed, covering 60 indicators such as traditional factors, market sentiment, macroeconomic indicators and company financial data, which affect stock prices. In the data preprocessing stage, in order to eliminate the influence of noise, the stock closing price series is first decomposed by using the ICEEMDAN method, which effectively divides them into high-frequency and low-frequency components according to their respective frequencies. Subsequently, LLE technique is used to narrow down the remaining indicators to obtain 9 narrowed features. Finally, each high-frequency subsequence is combined with all the dimensionality reduction features respectively to construct new indicator sets for input to the model. In the prediction stage, the hyperparameters of the prediction model for each subseries have been determined using the FA algorithm. The prediction has been carried out separately for the high-frequency and low-frequency components, employing the BiLSTM and GM prediction methods. Ultimately, the prediction results of each subseries have been superimposed to obtain the final stock price prediction value. In this paper, an empirical study was conducted using stock price data such as Shanghai composite index. The experimental results show that the established stock price prediction model based on ICEEMDAN-FA-BiLSTM–GM has obvious advantages in terms of prediction accuracy and stability compared with traditional methods and other combined prediction methods. This model can provide more accurate stock price prediction and promote the rationalization of investment decision and the accuracy of risk control.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems