Stochastic models of advection-diffusion in layered media

Elliot J. Carr
{"title":"Stochastic models of advection-diffusion in layered media","authors":"Elliot J. Carr","doi":"arxiv-2409.08447","DOIUrl":null,"url":null,"abstract":"Mathematically modelling diffusive and advective transport of particles in\nheterogeneous layered media is important to many applications in computational,\nbiological and medical physics. While deterministic continuum models of such\ntransport processes are well established, they fail to account for randomness\ninherent in many problems and are valid only for a large number of particles.\nTo address this, this paper derives a suite of equivalent stochastic\n(discrete-time discrete-space random walk) models for several standard\ncontinuum (partial differential equation) models of diffusion and\nadvection-diffusion across a fully- or semi-permeable interface. Our approach\ninvolves discretising the continuum model in space and time to yield a Markov\nchain, which governs the transition probabilities between spatial lattice sites\nduring each time step. Discretisation in space is carried out using a standard\nfinite volume method while two options are considered for discretisation in\ntime. A simple forward Euler discretisation yields a stochastic model taking\nthe form of a local (nearest-neighbour) random walk with simple analytical\nexpressions for the transition probabilities while an exact exponential\ndiscretisation yields a non-local random walk with transition probabilities\ndefined numerically via a matrix exponential. Constraints on the size of the\nspatial and/or temporal steps are provided for each option to ensure the\ntransition probabilities are non-negative. MATLAB code comparing the stochastic\nand continuum models is available on GitHub\n(https://github.com/elliotcarr/Carr2024c) with simulation results demonstrating\ngood agreement for several example problems.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematically modelling diffusive and advective transport of particles in heterogeneous layered media is important to many applications in computational, biological and medical physics. While deterministic continuum models of such transport processes are well established, they fail to account for randomness inherent in many problems and are valid only for a large number of particles. To address this, this paper derives a suite of equivalent stochastic (discrete-time discrete-space random walk) models for several standard continuum (partial differential equation) models of diffusion and advection-diffusion across a fully- or semi-permeable interface. Our approach involves discretising the continuum model in space and time to yield a Markov chain, which governs the transition probabilities between spatial lattice sites during each time step. Discretisation in space is carried out using a standard finite volume method while two options are considered for discretisation in time. A simple forward Euler discretisation yields a stochastic model taking the form of a local (nearest-neighbour) random walk with simple analytical expressions for the transition probabilities while an exact exponential discretisation yields a non-local random walk with transition probabilities defined numerically via a matrix exponential. Constraints on the size of the spatial and/or temporal steps are provided for each option to ensure the transition probabilities are non-negative. MATLAB code comparing the stochastic and continuum models is available on GitHub (https://github.com/elliotcarr/Carr2024c) with simulation results demonstrating good agreement for several example problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层状介质中的平流-扩散随机模型
对粒子在不均匀层状介质中的扩散和平流输运进行数学建模,对计算、生物和医学物理学中的许多应用都非常重要。为了解决这个问题,本文为几个标准连续(偏微分方程)模型推导了一套等效的随机(离散时间离散空间随机行走)模型,用于全渗透或半渗透界面上的扩散和平流扩散。我们的方法是将连续模型在空间和时间上离散化,从而产生马尔科夫链,该链控制着每个时间步长内空间晶格点之间的转换概率。空间离散化采用标准有限体积法,而时间离散化则考虑了两种方案。简单的前向欧拉离散化产生了一个随机模型,其形式为局部(近邻)随机游走,过渡概率有简单的分析表达式;而精确指数离散化产生了一个非局部随机游走,过渡概率通过矩阵指数数值定义。每种方案都对空间和/或时间步长进行了限制,以确保过渡概率为非负。比较随机模型和连续模型的 MATLAB 代码可在 GitHub(https://github.com/elliotcarr/Carr2024c) 上获取,仿真结果表明两者在几个示例问题上的一致性很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1