Few-Shot Learning Approach on Tuberculosis Classification Based on Chest X-Ray Images

A. A. G. Yogi Pramana, Faiz Ihza Permana, Muhammad Fazil Maulana, Dzikri Rahadian Fudholi
{"title":"Few-Shot Learning Approach on Tuberculosis Classification Based on Chest X-Ray Images","authors":"A. A. G. Yogi Pramana, Faiz Ihza Permana, Muhammad Fazil Maulana, Dzikri Rahadian Fudholi","doi":"arxiv-2409.11644","DOIUrl":null,"url":null,"abstract":"Tuberculosis (TB) is caused by the bacterium Mycobacterium tuberculosis,\nprimarily affecting the lungs. Early detection is crucial for improving\ntreatment effectiveness and reducing transmission risk. Artificial intelligence\n(AI), particularly through image classification of chest X-rays, can assist in\nTB detection. However, class imbalance in TB chest X-ray datasets presents a\nchallenge for accurate classification. In this paper, we propose a few-shot\nlearning (FSL) approach using the Prototypical Network algorithm to address\nthis issue. We compare the performance of ResNet-18, ResNet-50, and VGG16 in\nfeature extraction from the TBX11K Chest X-ray dataset. Experimental results\ndemonstrate classification accuracies of 98.93% for ResNet-18, 98.60% for\nResNet-50, and 33.33% for VGG16. These findings indicate that the proposed\nmethod outperforms others in mitigating data imbalance, which is particularly\nbeneficial for disease classification applications.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis (TB) is caused by the bacterium Mycobacterium tuberculosis, primarily affecting the lungs. Early detection is crucial for improving treatment effectiveness and reducing transmission risk. Artificial intelligence (AI), particularly through image classification of chest X-rays, can assist in TB detection. However, class imbalance in TB chest X-ray datasets presents a challenge for accurate classification. In this paper, we propose a few-shot learning (FSL) approach using the Prototypical Network algorithm to address this issue. We compare the performance of ResNet-18, ResNet-50, and VGG16 in feature extraction from the TBX11K Chest X-ray dataset. Experimental results demonstrate classification accuracies of 98.93% for ResNet-18, 98.60% for ResNet-50, and 33.33% for VGG16. These findings indicate that the proposed method outperforms others in mitigating data imbalance, which is particularly beneficial for disease classification applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于胸部 X 射线图像的肺结核分类 "少量学习 "方法
结核病(TB)是由结核分枝杆菌引起的,主要侵犯肺部。早期发现对于提高治疗效果和降低传播风险至关重要。人工智能(AI),尤其是通过对胸部 X 光片进行图像分类,可以帮助检测结核病。然而,结核病胸部 X 光片数据集中的类不平衡给准确分类带来了挑战。在本文中,我们提出了一种使用原型网络算法的 "少量清除"(FSL)方法来解决这一问题。我们比较了 ResNet-18、ResNet-50 和 VGG16 从 TBX11K 胸部 X 光数据集中提取特征的性能。实验结果表明,ResNet-18 的分类准确率为 98.93%,ResNet-50 为 98.60%,VGG16 为 33.33%。这些结果表明,所提出的方法在缓解数据不平衡方面优于其他方法,这对疾病分类应用尤其有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1