Real-Time Stochastic Terrain Mapping and Processing for Autonomous Safe Landing

Kento Tomita, Koki Ho
{"title":"Real-Time Stochastic Terrain Mapping and Processing for Autonomous Safe Landing","authors":"Kento Tomita, Koki Ho","doi":"arxiv-2409.09309","DOIUrl":null,"url":null,"abstract":"Onboard terrain sensing and mapping for safe planetary landings often suffer\nfrom missed hazardous features, e.g., small rocks, due to the large\nobservational range and the limited resolution of the obtained terrain data. To\nthis end, this paper develops a novel real-time stochastic terrain mapping\nalgorithm that accounts for topographic uncertainty between the sampled points,\nor the uncertainty due to the sparse 3D terrain measurements. We introduce a\nGaussian digital elevation map that is efficiently constructed using the\ncombination of Delauney triangulation and local Gaussian process regression.\nThe geometric investigation of the lander-terrain interaction is exploited to\nefficiently evaluate the marginally conservative local slope and roughness\nwhile avoiding the costly computation of the local plane. The conservativeness\nis proved in the paper. The developed real-time uncertainty quantification\npipeline enables stochastic landing safety evaluation under challenging\noperational conditions, such as a large observational range or limited sensor\ncapability, which is a critical stepping stone for the development of\npredictive guidance algorithms for safe autonomous planetary landing. Detailed\nreviews on background and related works are also presented.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Onboard terrain sensing and mapping for safe planetary landings often suffer from missed hazardous features, e.g., small rocks, due to the large observational range and the limited resolution of the obtained terrain data. To this end, this paper develops a novel real-time stochastic terrain mapping algorithm that accounts for topographic uncertainty between the sampled points, or the uncertainty due to the sparse 3D terrain measurements. We introduce a Gaussian digital elevation map that is efficiently constructed using the combination of Delauney triangulation and local Gaussian process regression. The geometric investigation of the lander-terrain interaction is exploited to efficiently evaluate the marginally conservative local slope and roughness while avoiding the costly computation of the local plane. The conservativeness is proved in the paper. The developed real-time uncertainty quantification pipeline enables stochastic landing safety evaluation under challenging operational conditions, such as a large observational range or limited sensor capability, which is a critical stepping stone for the development of predictive guidance algorithms for safe autonomous planetary landing. Detailed reviews on background and related works are also presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自主安全着陆的实时随机地形测绘和处理技术
由于观测范围大,获得的地形数据分辨率有限,用于行星安全着陆的机载地形传感和绘图经常会遗漏危险特征,如小岩石。为此,本文开发了一种新颖的实时随机地形测绘算法,该算法考虑了采样点之间地形的不确定性,或由于稀疏的三维地形测量而产生的不确定性。我们引入了一种高斯数字高程图,该高斯数字高程图是利用 Delauney 三角测量和局部高斯过程回归相结合的方法有效构建的。利用对着陆器与地形相互作用的几何调查,可以有效地评估边际保守的局部坡度和粗糙度,同时避免昂贵的局部平面计算。本文证明了这种保守性。所开发的实时不确定性量化管道能够在具有挑战性的操作条件下(如观测范围大或传感器能力有限)进行随机着陆安全评估,这对于开发用于行星安全自主着陆的预测制导算法来说是至关重要的一步。此外,还介绍了背景和相关工作的详细回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1