Large Bayesian SVARs with linear restrictions

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-08-01 DOI:10.1016/j.jeconom.2024.105850
Chenghan Hou
{"title":"Large Bayesian SVARs with linear restrictions","authors":"Chenghan Hou","doi":"10.1016/j.jeconom.2024.105850","DOIUrl":null,"url":null,"abstract":"<div><p>This paper develops a Markov Chain Monte Carlo (MCMC) algorithm for Bayesian inference in large structural vector autoregressions (SVARs) with linear restrictions. Our proposed method is based on a novel parameter transformation scheme, which aims to facilitate sampling from the posterior distribution of model parameters when linear equality and inequality restrictions are imposed on contemporaneous impulse responses. A prominent feature of the proposed methodology is its applicability for inference in SVARs with over-identifying restrictions. In our empirical application, we demonstrate the usefulness of our method by employing a large Proxy-SVAR with multiple proxy variables to simultaneously identify multiple macroeconomic shocks and investigate their contributions to the 2007–09 Recession.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"244 1","pages":"Article 105850"},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001957","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a Markov Chain Monte Carlo (MCMC) algorithm for Bayesian inference in large structural vector autoregressions (SVARs) with linear restrictions. Our proposed method is based on a novel parameter transformation scheme, which aims to facilitate sampling from the posterior distribution of model parameters when linear equality and inequality restrictions are imposed on contemporaneous impulse responses. A prominent feature of the proposed methodology is its applicability for inference in SVARs with over-identifying restrictions. In our empirical application, we demonstrate the usefulness of our method by employing a large Proxy-SVAR with multiple proxy variables to simultaneously identify multiple macroeconomic shocks and investigate their contributions to the 2007–09 Recession.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有线性限制的大型贝叶斯 SVAR
本文为具有线性限制的大型结构向量自回归(SVAR)的贝叶斯推断开发了一种马尔可夫链蒙特卡罗(MCMC)算法。我们提出的方法基于一种新颖的参数转换方案,其目的是在对同期脉冲响应施加线性相等和不相等限制时,便于从模型参数的后验分布中采样。所提方法的一个显著特点是适用于具有过度识别限制的 SVAR 的推理。在我们的实证应用中,我们采用了一个具有多个代理变量的大型代理-SVAR,以同时识别多个宏观经济冲击并研究它们对 2007-09 年经济衰退的影响,从而证明了我们的方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Estimating and testing for smooth structural changes in moment condition models Validating approximate slope homogeneity in large panels Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1