Kunrou Zhang , Yongbin Guo , Ke Zhang , Zean Xie , Linlin Mei , Xintong Wang , Wenxi Wang , Yangyang Song , Guichang Wang , Zhen Zhao
{"title":"Insights into Cl effect for propylene epoxidation over Ag2O(111) surface: A periodic density functional theory study","authors":"Kunrou Zhang , Yongbin Guo , Ke Zhang , Zean Xie , Linlin Mei , Xintong Wang , Wenxi Wang , Yangyang Song , Guichang Wang , Zhen Zhao","doi":"10.1016/j.mcat.2024.114552","DOIUrl":null,"url":null,"abstract":"<div><p>As an environmentally friendly way, propylene epoxidation forming propylene oxide (PO) catalyzed by Ag-based catalyst had received considerable attentions, which was important in the chemical industry. The experimental results exhibited that the products of propylene epoxidation catalyzed by Ag<sub>2</sub>O were PO and carbon dioxide. In this work, the spin-polarized density functional theory (DFT) calculations combined with a Hubbard U correction were performed to investigate propylene epoxidation on Ag<sub>2</sub>O(111) and Cl−Ag<sub>2</sub>O(111) surfaces, and reaction micro-mechanism of propylene epoxidation was discussed in detail. The micro-mechanism mainly included two pathways: the allylic hydrogen stripping (AHS) pathway and the intermediary propylene oxametallacycles (OMMP) pathway. In the AHS pathway, the allyl radical can be generated, which was considered as a precursor for acrolein formation, and completed combustion yielding CO<sub>2</sub>. In the OMMP pathway, PO, propanal and acetone can be created through the propylene oxametallacycle intermediates. Our calculated results indicated that the O<sub>suf</sub> site on the Ag<sub>2</sub>O(111) surface has a stronger basicity than the O<sub>suf</sub> site on the Cl−Ag<sub>2</sub>O(111) surface, the stronger basicity was beneficial for the AHS pathway, and carbon dioxide can be regarded as the main product for propylene epoxidation. It was also found that PO became the main product with the effect of Cl doping on the Ag<sub>2</sub>O(111) surface, and the electrostatic effect of Cl−Ag<sub>cus</sub> can improve the adsorption ability between the Ag<sub>cus</sub> site and the absorbate. Moreover, energetic span model analysis were carried out and found that the TOF or the orders of selectivity are: acrolein > acetone > propanal ≅ PO on clean surface, PO > acetone > acrolein > propanal on the Cl doped surface, and acrolein, as a precursor, was easily completely burned to CO<sub>2</sub>, the results confirmed that the selectivity of PO can be enhanced by the effect of subsurface Cl<sup>-</sup> doping. The present study aimed to help workers to find high selectivity and activity catalyst for propylene epoxidation.</p></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114552"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246882312400734X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As an environmentally friendly way, propylene epoxidation forming propylene oxide (PO) catalyzed by Ag-based catalyst had received considerable attentions, which was important in the chemical industry. The experimental results exhibited that the products of propylene epoxidation catalyzed by Ag2O were PO and carbon dioxide. In this work, the spin-polarized density functional theory (DFT) calculations combined with a Hubbard U correction were performed to investigate propylene epoxidation on Ag2O(111) and Cl−Ag2O(111) surfaces, and reaction micro-mechanism of propylene epoxidation was discussed in detail. The micro-mechanism mainly included two pathways: the allylic hydrogen stripping (AHS) pathway and the intermediary propylene oxametallacycles (OMMP) pathway. In the AHS pathway, the allyl radical can be generated, which was considered as a precursor for acrolein formation, and completed combustion yielding CO2. In the OMMP pathway, PO, propanal and acetone can be created through the propylene oxametallacycle intermediates. Our calculated results indicated that the Osuf site on the Ag2O(111) surface has a stronger basicity than the Osuf site on the Cl−Ag2O(111) surface, the stronger basicity was beneficial for the AHS pathway, and carbon dioxide can be regarded as the main product for propylene epoxidation. It was also found that PO became the main product with the effect of Cl doping on the Ag2O(111) surface, and the electrostatic effect of Cl−Agcus can improve the adsorption ability between the Agcus site and the absorbate. Moreover, energetic span model analysis were carried out and found that the TOF or the orders of selectivity are: acrolein > acetone > propanal ≅ PO on clean surface, PO > acetone > acrolein > propanal on the Cl doped surface, and acrolein, as a precursor, was easily completely burned to CO2, the results confirmed that the selectivity of PO can be enhanced by the effect of subsurface Cl- doping. The present study aimed to help workers to find high selectivity and activity catalyst for propylene epoxidation.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods