A first step towards the detection of damage processes in endodontic Ni-Ti alloy files, using acoustic emission

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-09-17 DOI:10.1016/j.jmbbm.2024.106743
Jeanne Davril , Romain Hocquel , Marin Vincent , Rémy Balthazard , Stéphane Claude , Eric Mortier , Adrien Baldit , Rachid Rahouadj
{"title":"A first step towards the detection of damage processes in endodontic Ni-Ti alloy files, using acoustic emission","authors":"Jeanne Davril ,&nbsp;Romain Hocquel ,&nbsp;Marin Vincent ,&nbsp;Rémy Balthazard ,&nbsp;Stéphane Claude ,&nbsp;Eric Mortier ,&nbsp;Adrien Baldit ,&nbsp;Rachid Rahouadj","doi":"10.1016/j.jmbbm.2024.106743","DOIUrl":null,"url":null,"abstract":"<div><p>Despite major instrumental developments over the last decade, endodontic files are still not infallible. It is well known that NiTi rotary files can break without any visible sign of deformation. Instrument breakage under combined flexion-torsion loading is still common in clinical practice. Unfortunately, breakage of this type of instrument mainly occurs in narrow canals, through pinching in the apical region. When such an incident occurs, the endodontist must adopt a debris retrieval strategy that is both stressful and not guaranteed success. This study proposes a new method for experimental damage detection leading to the fracture of Ni-Ti shape memory alloy endodontic files. It is based on the acoustic emission (AE) technique and mechanical parameters measured in real-time and image analysis. It has been shown that the AE results correlate with the damage observations and torque and force measurements recorded during the tests.</p><p>Having carried out numerous root canal treatment on resin blocks, it appears that this new detection and analysis technique can be used to analyze and anticipate the first signs of damage leading to endodontic file failure. The technological development of such a method, at the level of the engine itself, associated with the act in service procedure, would constitute a revolution in the field of endodontics.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106743"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124003758","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite major instrumental developments over the last decade, endodontic files are still not infallible. It is well known that NiTi rotary files can break without any visible sign of deformation. Instrument breakage under combined flexion-torsion loading is still common in clinical practice. Unfortunately, breakage of this type of instrument mainly occurs in narrow canals, through pinching in the apical region. When such an incident occurs, the endodontist must adopt a debris retrieval strategy that is both stressful and not guaranteed success. This study proposes a new method for experimental damage detection leading to the fracture of Ni-Ti shape memory alloy endodontic files. It is based on the acoustic emission (AE) technique and mechanical parameters measured in real-time and image analysis. It has been shown that the AE results correlate with the damage observations and torque and force measurements recorded during the tests.

Having carried out numerous root canal treatment on resin blocks, it appears that this new detection and analysis technique can be used to analyze and anticipate the first signs of damage leading to endodontic file failure. The technological development of such a method, at the level of the engine itself, associated with the act in service procedure, would constitute a revolution in the field of endodontics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用声发射检测牙髓镍钛合金锉损坏过程的第一步
尽管在过去的十年中器械技术有了很大的发展,但根管治疗锉仍然不是无懈可击的。众所周知,镍钛旋转锉可以在没有任何明显变形迹象的情况下折断。在临床实践中,弯曲扭转联合加载下的器械折断仍然很常见。不幸的是,这种器械的断裂主要发生在狭窄的牙槽中,是由于根尖部位的挤压造成的。发生这种情况时,牙髓病学家必须采取一种既紧张又不能保证成功的碎屑回收策略。本研究提出了一种新方法,用于导致镍钛形状记忆合金根管针断裂的实验性损伤检测。该方法基于声发射(AE)技术和实时测量的机械参数以及图像分析。在对树脂块进行了多次根管治疗后,这种新的检测和分析技术似乎可以用来分析和预测导致根管锉损坏的最初迹象。这种方法的技术发展,在发动机本身的层面上,与使用过程中的行为相关联,将构成根管治疗领域的一场革命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Macroscopic creep behavior of spheroids derived from mesenchymal stem cells under compression Sequential irradiation does not improve fatigue crack propagation resistance of human cortical bone at 15 kGy Editorial Board Improving the processability and mechanical strength of self-hardening robocasted hydroxyapatite scaffolds with silane coupling agents Plastic strain localization in Bouligand structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1