{"title":"Thermodynamic modeling of phase diagrams in La2O3-SiO2, Dy2O3-SiO2 and Er2O3-SiO2 systems","authors":"Kexin Qi , Caixia Liao , Zhipeng Pi, Fan Zhang","doi":"10.1016/j.calphad.2024.102750","DOIUrl":null,"url":null,"abstract":"<div><p>Thermodynamic modeling of the La<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>, Dy<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> and Er<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> systems is part of a broader effort to obtain thermodynamic databases of the rare earth silicates that can help offer insight on designing the environmental barrier coatings in gas turbine engines. The main aim of the present work is to focus on obtaining a set of self-consistent thermodynamic parameters of La<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>, Dy<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> and Er<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> systems. The ionic two-sublattice model was accepted to express the liquid phase, and all the binary phases were described as stoichiometric compounds due to the negligible solubility. After a critical literature review on the experimental phase diagrams data and thermodynamic properties for the La<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>, Dy<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> and Er<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> systems, thermodynamic optimizations were performed by means of the CALPHAD (CALculation of PHAse Diagram) method. The modeling was done using Thermo-Calc software with PARROT module. The comprehensive comparison between the experimental results and our calculations exhibits that the calculated phase diagrams and thermodynamic properties were in good agreement with the available experimental data, except for experimental data with doubtful quality. This means that our thermodynamic descriptions were reasonable and could provide a reliable basis for thermodynamic calculations in RE<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-based higher-order systems.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102750"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624000920","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermodynamic modeling of the La2O3-SiO2, Dy2O3-SiO2 and Er2O3-SiO2 systems is part of a broader effort to obtain thermodynamic databases of the rare earth silicates that can help offer insight on designing the environmental barrier coatings in gas turbine engines. The main aim of the present work is to focus on obtaining a set of self-consistent thermodynamic parameters of La2O3-SiO2, Dy2O3-SiO2 and Er2O3-SiO2 systems. The ionic two-sublattice model was accepted to express the liquid phase, and all the binary phases were described as stoichiometric compounds due to the negligible solubility. After a critical literature review on the experimental phase diagrams data and thermodynamic properties for the La2O3-SiO2, Dy2O3-SiO2 and Er2O3-SiO2 systems, thermodynamic optimizations were performed by means of the CALPHAD (CALculation of PHAse Diagram) method. The modeling was done using Thermo-Calc software with PARROT module. The comprehensive comparison between the experimental results and our calculations exhibits that the calculated phase diagrams and thermodynamic properties were in good agreement with the available experimental data, except for experimental data with doubtful quality. This means that our thermodynamic descriptions were reasonable and could provide a reliable basis for thermodynamic calculations in RE2O3-SiO2-based higher-order systems.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.