A new efficient approach of DFN modelling constrained with fracture occurrence and spatial location

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-09-13 DOI:10.1016/j.cageo.2024.105729
Yudi Wang , Yungui Xu , Libing Du , Xuri Huang , Haifa AlSalmi , Jiali Liang
{"title":"A new efficient approach of DFN modelling constrained with fracture occurrence and spatial location","authors":"Yudi Wang ,&nbsp;Yungui Xu ,&nbsp;Libing Du ,&nbsp;Xuri Huang ,&nbsp;Haifa AlSalmi ,&nbsp;Jiali Liang","doi":"10.1016/j.cageo.2024.105729","DOIUrl":null,"url":null,"abstract":"<div><p>Fractures or faults in the subsurface exert a significant impact on fluid flow and engineering activities in that environment. Fracture modelling is one of the crucial techniques, providing essential insights into the mechanisms underlying these impacts. As a useful tool, the Discrete Fracture Network (DFN) method is often utilized to simulate fracture networks and to integrate fracture statistics into 3D numerical models. However, the current DFN modeling technology suffers from low operational efficiency, particularly when handling a substantial quantity of fractures in 3D models. This paper proposes two ways to improve the efficiency and accuracy of modelling fractures: the matrix-based random sampling method (for faster generation of fracture loactions) and the quaternion method (for more accurate description of fractures). These proposed approaches simplify the management of large number of fractures within 3D models. The paper provides a comprehensive description of the proposed methods, accompanied by pseudo-code for the algorithms. The effectiveness of the proposed approach is validated through a practical case study, demonstrating superior computational efficiency and enhanced applicability for large-scale fracture modeling.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"193 ","pages":"Article 105729"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002127","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Fractures or faults in the subsurface exert a significant impact on fluid flow and engineering activities in that environment. Fracture modelling is one of the crucial techniques, providing essential insights into the mechanisms underlying these impacts. As a useful tool, the Discrete Fracture Network (DFN) method is often utilized to simulate fracture networks and to integrate fracture statistics into 3D numerical models. However, the current DFN modeling technology suffers from low operational efficiency, particularly when handling a substantial quantity of fractures in 3D models. This paper proposes two ways to improve the efficiency and accuracy of modelling fractures: the matrix-based random sampling method (for faster generation of fracture loactions) and the quaternion method (for more accurate description of fractures). These proposed approaches simplify the management of large number of fractures within 3D models. The paper provides a comprehensive description of the proposed methods, accompanied by pseudo-code for the algorithms. The effectiveness of the proposed approach is validated through a practical case study, demonstrating superior computational efficiency and enhanced applicability for large-scale fracture modeling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以断裂发生和空间位置为约束的新型高效 DFN 建模方法
地下的断裂或断层对该环境中的流体流动和工程活动具有重大影响。断裂建模是关键技术之一,可为了解这些影响的内在机理提供重要依据。作为一种有用的工具,离散断裂网络(DFN)方法经常被用来模拟断裂网络,并将断裂统计数据整合到三维数值模型中。然而,目前的 DFN 建模技术存在运行效率低的问题,尤其是在三维模型中处理大量断裂时。本文提出了两种提高裂缝建模效率和准确性的方法:基于矩阵的随机抽样方法(用于更快地生成裂缝作用)和四元数方法(用于更准确地描述裂缝)。这些建议的方法简化了三维模型中大量裂缝的管理。本文全面介绍了所提出的方法,并附有算法的伪代码。通过实际案例研究验证了所提方法的有效性,证明了其卓越的计算效率和对大规模断裂建模的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1