Multiple-model polynomial regression and efficient algorithms for data analysis

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Theoretical Computer Science Pub Date : 2024-09-17 DOI:10.1016/j.tcs.2024.114878
Bohan Lyu , Jianzhong Li
{"title":"Multiple-model polynomial regression and efficient algorithms for data analysis","authors":"Bohan Lyu ,&nbsp;Jianzhong Li","doi":"10.1016/j.tcs.2024.114878","DOIUrl":null,"url":null,"abstract":"<div><p>This paper newly proposes a data analysis method using multiple-model <em>p</em>-order polynomial regression (MMPR), which separates given datasets into subsets and constructs respective polynomial regression models for them. An approximate algorithm to construct MMPR models based on <span><math><mo>(</mo><mi>ϵ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-estimator, and mathematical proofs of the correctness and efficiency of the algorithm are introduced. This paper empirically implements the method on both synthetic and real-world datasets, and it's shown to have comparable performance to existing regression methods in many cases, while it takes almost the shortest time to provide a regression model with high prediction accuracy.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1021 ","pages":"Article 114878"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030439752400495X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper newly proposes a data analysis method using multiple-model p-order polynomial regression (MMPR), which separates given datasets into subsets and constructs respective polynomial regression models for them. An approximate algorithm to construct MMPR models based on (ϵ,δ)-estimator, and mathematical proofs of the correctness and efficiency of the algorithm are introduced. This paper empirically implements the method on both synthetic and real-world datasets, and it's shown to have comparable performance to existing regression methods in many cases, while it takes almost the shortest time to provide a regression model with high prediction accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模型多项式回归和数据分析的高效算法
本文新近提出了一种使用多模型 p 阶多项式回归(MMPR)的数据分析方法,该方法将给定数据集分成若干子集,并为其构建相应的多项式回归模型。本文介绍了基于(ϵ,δ)估计器构建 MMPR 模型的近似算法,并对算法的正确性和效率进行了数学证明。本文在合成数据集和实际数据集上对该方法进行了实证,结果表明该方法在很多情况下与现有的回归方法性能相当,而且几乎用最短的时间就能提供预测准确率很高的回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
期刊最新文献
Editorial Board Gathering on a circle with limited visibility by anonymous oblivious robots On central placements of new vertices in a planar point set Vertex-independent spanning trees in complete Josephus cubes Density of k-ary words with 0, 1, 2 - error overlaps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1