Skull bone marrow-derived immune cells infiltrate the injured cerebral cortex and exhibit anti-inflammatory properties

IF 8.8 2区 医学 Q1 IMMUNOLOGY Brain, Behavior, and Immunity Pub Date : 2024-09-16 DOI:10.1016/j.bbi.2024.09.023
{"title":"Skull bone marrow-derived immune cells infiltrate the injured cerebral cortex and exhibit anti-inflammatory properties","authors":"","doi":"10.1016/j.bbi.2024.09.023","DOIUrl":null,"url":null,"abstract":"<div><p>Identifying the origins and contributions of peripheral-derived immune cell populations following brain injury is crucial for understanding their roles in neuroinflammation and tissue repair. This study investigated the infiltration and phenotypic characteristics of skull bone marrow-derived immune cells in the murine brain after traumatic brain injury (TBI). We performed calvarium transplantation from GFP donor mice and subjected the recipients to controlled cortical impact (CCI) injury 14 days post-transplant. Confocal imaging at 3 days post-CCI revealed GFP+ calvarium-derived cells were present in the ipsilateral injured cortex, expressing CD45 and CD11b immune markers. These cells included Ly6G-positive neutrophil or Ccr2-positive monocyte identities. Calvarium-derived GFP+/Iba1+ monocyte/macrophages expressed the efferocytosis receptor MERTK and displayed engulfment of NeuN+ and cleaved caspase 3+ apoptotic cells. Phenotypic analysis showed that greater calvarium-derived monocytes/macrophages disproportionately express the anti-inflammatory arginase-1 marker than pro-inflammatory CD86. To differentiate the responses of blood- and calvarium-derived macrophages, we transplanted GFP calvarium skull bone into tdTomato bone marrow chimeric mice, then performed CCI injury 14 days post-transplant. Calvarium-derived GFP+cells predominantly infiltrated the lesion boundary, while blood-derived tdTomato+ cells dispersed throughout the lesion and <em>peri</em>-lesion. Compared to calvarium-derived cells, more blood-derived cells expressed pro-inflammatory CD86 and displayed altered 3D morphologic traits. These findings uniquely demonstrate that skull bone marrow-derived immune cells infiltrate the brain after injury and contribute to the neuroinflammatory milieu, representing a novel immune cell source that may be further investigated for their causal role in functional outcomes.</p></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":null,"pages":null},"PeriodicalIF":8.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159124006263","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying the origins and contributions of peripheral-derived immune cell populations following brain injury is crucial for understanding their roles in neuroinflammation and tissue repair. This study investigated the infiltration and phenotypic characteristics of skull bone marrow-derived immune cells in the murine brain after traumatic brain injury (TBI). We performed calvarium transplantation from GFP donor mice and subjected the recipients to controlled cortical impact (CCI) injury 14 days post-transplant. Confocal imaging at 3 days post-CCI revealed GFP+ calvarium-derived cells were present in the ipsilateral injured cortex, expressing CD45 and CD11b immune markers. These cells included Ly6G-positive neutrophil or Ccr2-positive monocyte identities. Calvarium-derived GFP+/Iba1+ monocyte/macrophages expressed the efferocytosis receptor MERTK and displayed engulfment of NeuN+ and cleaved caspase 3+ apoptotic cells. Phenotypic analysis showed that greater calvarium-derived monocytes/macrophages disproportionately express the anti-inflammatory arginase-1 marker than pro-inflammatory CD86. To differentiate the responses of blood- and calvarium-derived macrophages, we transplanted GFP calvarium skull bone into tdTomato bone marrow chimeric mice, then performed CCI injury 14 days post-transplant. Calvarium-derived GFP+cells predominantly infiltrated the lesion boundary, while blood-derived tdTomato+ cells dispersed throughout the lesion and peri-lesion. Compared to calvarium-derived cells, more blood-derived cells expressed pro-inflammatory CD86 and displayed altered 3D morphologic traits. These findings uniquely demonstrate that skull bone marrow-derived immune cells infiltrate the brain after injury and contribute to the neuroinflammatory milieu, representing a novel immune cell source that may be further investigated for their causal role in functional outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
29.60
自引率
2.00%
发文量
290
审稿时长
28 days
期刊介绍: Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals. As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.
期刊最新文献
Differential effects of social versus monetary incentives on inhibitory control under acute inflammation. Depletion of the paternal gut microbiome alters sperm small RNAs and impacts offspring physiology and behavior in mice. Maternal immune activation alters temporal precision of spike generation of CA1 pyramidal neurons by unbalancing GABAergic inhibition in the Offspring Skull bone marrow-derived immune cells infiltrate the injured cerebral cortex and exhibit anti-inflammatory properties Biobehavioral mechanisms underlying symptoms in cancer patients with chronic graft-versus-host disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1