Jennifer L. Fisher , Kelly T. Williams , Leah J. Schneider , Andrew J. Keebaugh , Carrie L. German , Adam M. Hott , Narender Singh , Rebecca A. Clewell
{"title":"Evaluation of QSAR models for tissue-specific predictive toxicology and risk assessment of military-relevant chemical exposures: A systematic review","authors":"Jennifer L. Fisher , Kelly T. Williams , Leah J. Schneider , Andrew J. Keebaugh , Carrie L. German , Adam M. Hott , Narender Singh , Rebecca A. Clewell","doi":"10.1016/j.comtox.2024.100329","DOIUrl":null,"url":null,"abstract":"<div><p>The use of in silico modeling tools for predictive toxicology has potential to improve force health protection in the military by helping to efficiently evaluate the risk of adverse health effects from operational exposures. Thus, a systematic review was performed to understand if existing quantitative structure–activity relationship (QSAR) models for tissue-specific toxicity were potentially adaptable for use in risk assessments of military-relevant exposures. Within this systematic review, we assessed 563 peer-reviewed publications in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses<!--> <!-->(PRISMA) 2020 guidelines and Organization for Economic Co-operation and Development (OECD) 2023 quantitative structural-activity relationship Assessment Framework. From these publications, we further evaluated 129 existing models that utilize QSAR and tissue-specific data for predicting toxicity in the following tissues: liver (i.e., hepatotoxicity), heart (i.e., cardiotoxicity), lung (i.e., respiratory toxicity), the central nervous system (neurotoxicity), and kidney (i.e., nephrotoxicity). The methodology, performance, and accessibility of these models and analysis code were thoroughly documented and then assessed to determine advancements and inadequacies for occupational and military application. While ∼ 58 % of the 129 tissue-specific QSAR approaches followed at least 3 OECD guidelines, there were only 8 tissue-specific models that satisfied all screening criteria. The most common criteria not satisfied was mechanistic interpretation of the model (i.e., OECD criteria number five). Furthermore, while the greatest number of publications and models were available for the liver, many of them were for pharmaceutical applications. Moreover, there were limited available models for heart and kidney for any application. In conclusion, our findings underscore the necessity for additional and updated tissue-specific QSAR models to predict various organ-specific targets while addressing military specific needs. Furthermore, increased publication of model workflows or user-friendly applications are crucial to enhancing model accessibility. In this systematic review, we provide an overview of the databases, resources, and future strategies to advance tissue-specific QSAR model development.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"32 ","pages":"Article 100329"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111324000318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of in silico modeling tools for predictive toxicology has potential to improve force health protection in the military by helping to efficiently evaluate the risk of adverse health effects from operational exposures. Thus, a systematic review was performed to understand if existing quantitative structure–activity relationship (QSAR) models for tissue-specific toxicity were potentially adaptable for use in risk assessments of military-relevant exposures. Within this systematic review, we assessed 563 peer-reviewed publications in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guidelines and Organization for Economic Co-operation and Development (OECD) 2023 quantitative structural-activity relationship Assessment Framework. From these publications, we further evaluated 129 existing models that utilize QSAR and tissue-specific data for predicting toxicity in the following tissues: liver (i.e., hepatotoxicity), heart (i.e., cardiotoxicity), lung (i.e., respiratory toxicity), the central nervous system (neurotoxicity), and kidney (i.e., nephrotoxicity). The methodology, performance, and accessibility of these models and analysis code were thoroughly documented and then assessed to determine advancements and inadequacies for occupational and military application. While ∼ 58 % of the 129 tissue-specific QSAR approaches followed at least 3 OECD guidelines, there were only 8 tissue-specific models that satisfied all screening criteria. The most common criteria not satisfied was mechanistic interpretation of the model (i.e., OECD criteria number five). Furthermore, while the greatest number of publications and models were available for the liver, many of them were for pharmaceutical applications. Moreover, there were limited available models for heart and kidney for any application. In conclusion, our findings underscore the necessity for additional and updated tissue-specific QSAR models to predict various organ-specific targets while addressing military specific needs. Furthermore, increased publication of model workflows or user-friendly applications are crucial to enhancing model accessibility. In this systematic review, we provide an overview of the databases, resources, and future strategies to advance tissue-specific QSAR model development.
期刊介绍:
Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs