Activation of NO with microwave irradiation for low temperature direct decomposition

IF 4.7 2区 化学 Q2 CHEMISTRY, PHYSICAL Applied Catalysis A: General Pub Date : 2024-09-16 DOI:10.1016/j.apcata.2024.119965
Yuta Ikoma , Fang Siman , Motonori Watanabe , Miki Inada , Atsushi Takagaki , Tatsumi Ishihara
{"title":"Activation of NO with microwave irradiation for low temperature direct decomposition","authors":"Yuta Ikoma ,&nbsp;Fang Siman ,&nbsp;Motonori Watanabe ,&nbsp;Miki Inada ,&nbsp;Atsushi Takagaki ,&nbsp;Tatsumi Ishihara","doi":"10.1016/j.apcata.2024.119965","DOIUrl":null,"url":null,"abstract":"<div><p>Direct decomposition of nitric oxide (NO) on metal oxides under microwave (MW) irradiation was investigated and it was found that the most metal oxides show higher NO decomposition activity than that in the conventional electric furnace heating at low temperature. Among the examined oxides, it was found that TiO<sub>2</sub>, CeO<sub>2</sub>, ZrO<sub>2</sub>, and Y<sub>2</sub>O<sub>3</sub> show about 95 % or higher NO conversion at 573 K, and both N<sub>2</sub> and O<sub>2</sub> are formed with almost equimolar amount. In particular, ZrO<sub>2</sub> exhibited high and stable NO decomposition activity more than 25 h. In this study, the influence of coexisting gases on NO decomposition activity on ZrO<sub>2</sub> under microwave heating was further investigated and the direct decomposition of NO can be proceeded even in the presence of 5 % O<sub>2</sub>, 5 % CO<sub>2,</sub> or humidified condition. Mechanism of high NO decomposition activity under MW irradiation was also studied and it was found that removal of oxygen from the catalyst was much increased under MW irradiation because of direct activation of oxygen and also direct activation of NO which is also suggested by pulse reaction.</p></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926860X24004101/pdfft?md5=7d9311a70d809155b992c942b5fbd8c2&pid=1-s2.0-S0926860X24004101-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24004101","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Direct decomposition of nitric oxide (NO) on metal oxides under microwave (MW) irradiation was investigated and it was found that the most metal oxides show higher NO decomposition activity than that in the conventional electric furnace heating at low temperature. Among the examined oxides, it was found that TiO2, CeO2, ZrO2, and Y2O3 show about 95 % or higher NO conversion at 573 K, and both N2 and O2 are formed with almost equimolar amount. In particular, ZrO2 exhibited high and stable NO decomposition activity more than 25 h. In this study, the influence of coexisting gases on NO decomposition activity on ZrO2 under microwave heating was further investigated and the direct decomposition of NO can be proceeded even in the presence of 5 % O2, 5 % CO2, or humidified condition. Mechanism of high NO decomposition activity under MW irradiation was also studied and it was found that removal of oxygen from the catalyst was much increased under MW irradiation because of direct activation of oxygen and also direct activation of NO which is also suggested by pulse reaction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用微波辐照活化 NO,实现低温直接分解
研究发现,大多数金属氧化物在微波(MW)辐照下的一氧化氮(NO)直接分解活性高于传统电炉低温加热时的一氧化氮分解活性。在所研究的氧化物中,发现 TiO2、CeO2、ZrO2 和 Y2O3 在 573 K 时的 NO 转化率约为 95% 或更高,并且几乎以等摩尔量生成 N2 和 O2。其中,ZrO2 表现出高而稳定的 NO 分解活性,分解时间超过 25 小时。本研究进一步研究了在微波加热条件下,共存气体对 ZrO2 上 NO 分解活性的影响,结果表明,即使存在 5 % O2、5 % CO2 或加湿条件,也能直接分解 NO。此外,还研究了微波辐照下氮氧化物高分解活性的机理,发现在微波辐照下,由于氧气的直接活化和氮氧化物的直接活化,催化剂中氧气的去除率大大提高,这也是脉冲反应所暗示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Catalysis A: General
Applied Catalysis A: General 化学-环境科学
CiteScore
9.00
自引率
5.50%
发文量
415
审稿时长
24 days
期刊介绍: Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications. Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.
期刊最新文献
Catalytic performances of Ag/SiC catalysts for styrene epoxidation in O2 atmosphere Innovative synthesis of graphdiyne@Pd material using acetylene gas promotes hydrogen evolution performance of Zn0.5Cd0.5S heterojunction Insights into the physicochemical property modification on the product distribution of CO2 hydrogenation over heteroatom doped Na-Fe/ZrO2 catalysts Palladium immobilized on functionalized halloysite: A robust catalyst for ligand free Suzuki–Miyaura cross coupling and synthesis of pyrano[2,3-c]pyrazole motifs via four component cascade reaction and their in-silico antitubercular screening Effects of surfactants on the sulfurization and hydrogenation activities of Anderson-type Co-Mo heteropolyacid catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1