Yuhao Xia , Qiannan Yang , Qian Li , Jiahao Wen , Mingyang Li , Zhicheng Wu , Liping Nie , Zhong Huang , Shang Ying Wu , Jing Du
{"title":"Metallothionein-1 mitigates the advancement of osteoarthritis by regulating Th17/Treg balance","authors":"Yuhao Xia , Qiannan Yang , Qian Li , Jiahao Wen , Mingyang Li , Zhicheng Wu , Liping Nie , Zhong Huang , Shang Ying Wu , Jing Du","doi":"10.1016/j.cellimm.2024.104877","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoarthritis (OA) is a chronic inflammatory joint disorder characterized by cartilage degradation and bone remodeling. This study investigated the regulatory role of metallothionein 1 (MT1) in modulating immune responses and the balance between regulatory T cells (Treg) and T helper 17 cells (Th17) in OA. Peripheral blood mononuclear cells (PBMCs) from healthy individuals and OA patients were assessed for cytokine expression linked to Treg/Th17 homeostasis. OA was induced in wild-type (WT) and <em>Mt1</em> knockout (MT1KO) mice via surgical destabilization of the medial meniscus. Clinical scores, pathological features, inflammatory cytokines, and Treg/Th17 balance were evaluated. MT1KO mice showed significantly elevated <em>Mt1</em>, pro-inflammatory cytokines (IL-1, IL-6, TNF-α) and exacerbated OA progression, characterized by increased knee joint diameter, inflammatory infiltration, and cartilage destruction. Mechanistically, disrupted Treg/Th17 balance played a pivotal role in OA exacerbation, with MT1KO promoting Th17 differentiation and reducing Treg populations. Additionally, the compensatory elevation of anti-inflammatory interleukin-10 (IL-10) in OA patients hinted at a nuanced immune regulatory mechanism. The study illuminates intricate interactions involving MT1, Treg/Th17 cells, and pro-inflammatory cytokines in OA pathogenesis, suggesting MT1′s potential as a pivotal regulatory factor and a therapeutic target for mitigating immune dysregulation in OA.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"405 ","pages":"Article 104877"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874924000807","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA) is a chronic inflammatory joint disorder characterized by cartilage degradation and bone remodeling. This study investigated the regulatory role of metallothionein 1 (MT1) in modulating immune responses and the balance between regulatory T cells (Treg) and T helper 17 cells (Th17) in OA. Peripheral blood mononuclear cells (PBMCs) from healthy individuals and OA patients were assessed for cytokine expression linked to Treg/Th17 homeostasis. OA was induced in wild-type (WT) and Mt1 knockout (MT1KO) mice via surgical destabilization of the medial meniscus. Clinical scores, pathological features, inflammatory cytokines, and Treg/Th17 balance were evaluated. MT1KO mice showed significantly elevated Mt1, pro-inflammatory cytokines (IL-1, IL-6, TNF-α) and exacerbated OA progression, characterized by increased knee joint diameter, inflammatory infiltration, and cartilage destruction. Mechanistically, disrupted Treg/Th17 balance played a pivotal role in OA exacerbation, with MT1KO promoting Th17 differentiation and reducing Treg populations. Additionally, the compensatory elevation of anti-inflammatory interleukin-10 (IL-10) in OA patients hinted at a nuanced immune regulatory mechanism. The study illuminates intricate interactions involving MT1, Treg/Th17 cells, and pro-inflammatory cytokines in OA pathogenesis, suggesting MT1′s potential as a pivotal regulatory factor and a therapeutic target for mitigating immune dysregulation in OA.
期刊介绍:
Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered.
Research Areas include:
• Antigen receptor sites
• Autoimmunity
• Delayed-type hypersensitivity or cellular immunity
• Immunologic deficiency states and their reconstitution
• Immunologic surveillance and tumor immunity
• Immunomodulation
• Immunotherapy
• Lymphokines and cytokines
• Nonantibody immunity
• Parasite immunology
• Resistance to intracellular microbial and viral infection
• Thymus and lymphocyte immunobiology
• Transplantation immunology
• Tumor immunity.