{"title":"Optimal acquisition time estimation method for CSEM with high-order pseudo-random signal","authors":"","doi":"10.1016/j.jappgeo.2024.105517","DOIUrl":null,"url":null,"abstract":"<div><p>High-order pseudo-random signal is gradually being applied in controlled-source electromagnetic (CSEM) exploration. In contrast to the conventional single-frequency sweep mode, the high-order pseudo-random signal enables simultaneous transmission of multiple frequencies. However, estimating a fixed acquisition time based on observed noise levels often results in poor adaptability for high-order pseudo-random signal, which only require reception of one set of waveform. In this study, we presented an estimation method for acquisition time for CSEM with high-order pseudo-random signal using an improved logistic function. The improved logistic function was proposed to introduce a time-decay factor into the governing equation for the first time. By considering the transformation rule of noise statistical characteristics with time, the specific parameters of the function have been determined to better describe the dynamic evolution process of the signal quality. The effective frequencies were extracted at various acquisition times based on the noise evaluation number, and the resulting quantity of effective frequencies was used as the fitting target. Guidance for the fieldwork was determined based on the average time of the saturation period, in accordance with the properties of the function. The reliability of the improved logistic function was validated through a transmission current data simulation. The proposed method was demonstrated through the measured data from both strong and weak interference areas.</p></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124002337","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-order pseudo-random signal is gradually being applied in controlled-source electromagnetic (CSEM) exploration. In contrast to the conventional single-frequency sweep mode, the high-order pseudo-random signal enables simultaneous transmission of multiple frequencies. However, estimating a fixed acquisition time based on observed noise levels often results in poor adaptability for high-order pseudo-random signal, which only require reception of one set of waveform. In this study, we presented an estimation method for acquisition time for CSEM with high-order pseudo-random signal using an improved logistic function. The improved logistic function was proposed to introduce a time-decay factor into the governing equation for the first time. By considering the transformation rule of noise statistical characteristics with time, the specific parameters of the function have been determined to better describe the dynamic evolution process of the signal quality. The effective frequencies were extracted at various acquisition times based on the noise evaluation number, and the resulting quantity of effective frequencies was used as the fitting target. Guidance for the fieldwork was determined based on the average time of the saturation period, in accordance with the properties of the function. The reliability of the improved logistic function was validated through a transmission current data simulation. The proposed method was demonstrated through the measured data from both strong and weak interference areas.
期刊介绍:
The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.