Baixuan Yang , Ahmed Alkhafaji , Junjie Ma , Hui-Ping Wang , Blair E Carlson , Wei Tong
{"title":"A fixture design for controlling impact of the airflow on laser welding of galvanized steels","authors":"Baixuan Yang , Ahmed Alkhafaji , Junjie Ma , Hui-Ping Wang , Blair E Carlson , Wei Tong","doi":"10.1016/j.optlastec.2024.111736","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines the effects of horizontal airflow on laser welding of galvanized steels. A uniform laminar flow was delivered using a specially designed external airflow device, and its impact on vapor plume dynamics and keyhole behavior was analyzed with synchronized high-speed cameras. The analysis showed that, under Follow airflow conditions, penetration depth was notably reduced compared to Against conditions, with increased surface defects observed in galvanized steel. Keyhole instability, as observed in the frequency spectrum (≤500 Hz), was more pronounced under Follow conditions. Theoretical analysis identified two main effects: 1) Airflow in the Against condition helps maintain keyhole opening by dragging melt away, while in the Follow condition, it drags melt toward the keyhole, leading to shrinkage. 2) Airflow affects the plasma plume, with Follow conditions increasing laser energy attenuation and resulting in shallow penetration. A hollow rectangular block fixture was designed to shield the molten pool and keyhole region from airflow effects. CFD modeling and experiments with a 5 mm block demonstrated reduced airflow impacts, improved process stability, and defect-free welds in both bare and galvanized steel.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224011940","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines the effects of horizontal airflow on laser welding of galvanized steels. A uniform laminar flow was delivered using a specially designed external airflow device, and its impact on vapor plume dynamics and keyhole behavior was analyzed with synchronized high-speed cameras. The analysis showed that, under Follow airflow conditions, penetration depth was notably reduced compared to Against conditions, with increased surface defects observed in galvanized steel. Keyhole instability, as observed in the frequency spectrum (≤500 Hz), was more pronounced under Follow conditions. Theoretical analysis identified two main effects: 1) Airflow in the Against condition helps maintain keyhole opening by dragging melt away, while in the Follow condition, it drags melt toward the keyhole, leading to shrinkage. 2) Airflow affects the plasma plume, with Follow conditions increasing laser energy attenuation and resulting in shallow penetration. A hollow rectangular block fixture was designed to shield the molten pool and keyhole region from airflow effects. CFD modeling and experiments with a 5 mm block demonstrated reduced airflow impacts, improved process stability, and defect-free welds in both bare and galvanized steel.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.