The Chemical Properties and Formation Mechanisms of Shallow Groundwater in the Guohe River Basin, China

IF 1.2 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geofluids Pub Date : 2024-09-19 DOI:10.1155/2024/3283185
Qing Zhang, Liang Li, Weiya Ge, Yunfeng Li, Zongfang Chen, Jian Hua, Yuanzhi Lu, Jingjing Du
{"title":"The Chemical Properties and Formation Mechanisms of Shallow Groundwater in the Guohe River Basin, China","authors":"Qing Zhang,&nbsp;Liang Li,&nbsp;Weiya Ge,&nbsp;Yunfeng Li,&nbsp;Zongfang Chen,&nbsp;Jian Hua,&nbsp;Yuanzhi Lu,&nbsp;Jingjing Du","doi":"10.1155/2024/3283185","DOIUrl":null,"url":null,"abstract":"<p>An investigation of the distribution and control factors of groundwater is significant for the rational exploitation and utilization of groundwater resources. This study analyzes the hydrogeochemical processes and control factors of shallow groundwater in the Guohe River Basin. A hydrogeological survey was conducted, and hydrochemical and hydrogen–oxygen isotopic data of 125 samples of surface water and groundwater were analyzed. The results showed that the total dissolved solid (TDS) content in shallow groundwater was 138–2967 mg/L, with an average of 831 mg/L. A decline in the TDS was observed from the upper to the lower reaches. The contents of the anions and cations in the shallow groundwater were in the order HCO<sub>3</sub><sup>−</sup> &gt; Cl<sup>−</sup> &gt; SO<sub>4</sub><sup>2−</sup> and Na<sup>+</sup> and K<sup>+</sup> &gt; Mg<sup>2+</sup> &gt; Ca<sup>2+</sup>, respectively. The cation exchange increased the aqueous concentrations of Na<sup>+</sup> and K<sup>+</sup>, and the TDS content was highly correlated with the contents of Na<sup>+</sup>, Cl<sup>−</sup>, and SO<sub>4</sub><sup>2−</sup> ions. The <i>δ</i>D and <i>δ</i><sup>18</sup>O values in shallow groundwater increased from the upper to the lower reaches, with the mean <i>δ</i>D values being −59.72‰, −53.58‰, and −47.17‰ and the mean <i>δ</i><sup>18</sup>O values being −8.33‰, −7.37‰, and −6.43‰. The contribution rates of the recharge source, evaporation, and water–rock interaction to the groundwater TDS concentration were 20.4%, 29.5%, and 50.1%, respectively. The water–rock interaction dominated the formation of shallow groundwater in the Guohe River Basin. The dissolution of salt rock and gypsum contributed to ion formation in shallow groundwater. The research findings can be used to improve the groundwater quality in the Guohe River Basin.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3283185","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3283185","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

An investigation of the distribution and control factors of groundwater is significant for the rational exploitation and utilization of groundwater resources. This study analyzes the hydrogeochemical processes and control factors of shallow groundwater in the Guohe River Basin. A hydrogeological survey was conducted, and hydrochemical and hydrogen–oxygen isotopic data of 125 samples of surface water and groundwater were analyzed. The results showed that the total dissolved solid (TDS) content in shallow groundwater was 138–2967 mg/L, with an average of 831 mg/L. A decline in the TDS was observed from the upper to the lower reaches. The contents of the anions and cations in the shallow groundwater were in the order HCO3 > Cl > SO42− and Na+ and K+ > Mg2+ > Ca2+, respectively. The cation exchange increased the aqueous concentrations of Na+ and K+, and the TDS content was highly correlated with the contents of Na+, Cl, and SO42− ions. The δD and δ18O values in shallow groundwater increased from the upper to the lower reaches, with the mean δD values being −59.72‰, −53.58‰, and −47.17‰ and the mean δ18O values being −8.33‰, −7.37‰, and −6.43‰. The contribution rates of the recharge source, evaporation, and water–rock interaction to the groundwater TDS concentration were 20.4%, 29.5%, and 50.1%, respectively. The water–rock interaction dominated the formation of shallow groundwater in the Guohe River Basin. The dissolution of salt rock and gypsum contributed to ion formation in shallow groundwater. The research findings can be used to improve the groundwater quality in the Guohe River Basin.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国郭河流域浅层地下水的化学性质和形成机理
研究地下水的分布和控制因素对合理开发利用地下水资源具有重要意义。本研究分析了虢河流域浅层地下水的水文地质化学过程和控制因素。开展了水文地质调查,分析了 125 个地表水和地下水样品的水化学和氢氧同位素数据。结果表明,浅层地下水的总溶解固体(TDS)含量为 138-2967 mg/L,平均为 831 mg/L。从上游到下游,总溶解固体含量呈下降趋势。浅层地下水中阴离子和阳离子的含量顺序分别为 HCO3- > Cl- > SO42- 和 Na+、K+ > Mg2+ > Ca2+。阳离子交换增加了 Na+ 和 K+ 的水浓度,TDS 含量与 Na+、Cl- 和 SO42- 离子的含量高度相关。浅层地下水中的δD和δ18O值从上游向下游递增,δD平均值分别为-59.72‰、-53.58‰和-47.17‰,δ18O平均值分别为-8.33‰、-7.37‰和-6.43‰。补给源、蒸发和水岩作用对地下水 TDS 浓度的贡献率分别为 20.4%、29.5% 和 50.1%。水岩作用主导了虢河流域浅层地下水的形成。盐岩和石膏的溶解促进了浅层地下水中离子的形成。研究结果可用于改善虢河流域的地下水水质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geofluids
Geofluids 地学-地球化学与地球物理
CiteScore
2.80
自引率
17.60%
发文量
835
期刊介绍: Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines. Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.
期刊最新文献
Anomalous Characteristics of Surface Geochemistry Above the Basin Geothermal System: A Case Study of the Shiba Basin in Huizhou, China Analysis of Stress Variation Characteristics of Jiangling Depression, Hubei, China, Based on Jingzhou Well Water Level and GNSS Data Experimental Simulation of Proppant Migration for Slick Water With Variable Viscosity During Fracturing Application of AVO Characteristics Analysis and Seismic Dispersion AVO Inversion to the Carbonate Hydrocarbon Reservoirs in Region Y of the Tarim Basin, China Comparative Analysis of Shale Gas Enrichment and High Yield Geological Conditions of Wufeng–Longmaxi Formation and Qiongzhusi Formation in Southern Sichuan Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1