{"title":"IPNet: An Interpretable Network with Progressive Loss for Whole-stage Colorectal Disease Diagnosis.","authors":"Junhu Fu,Ke Chen,Qi Dou,Yun Gao,Yiping He,Pinghong Zhou,Shengli Lin,Yuanyuan Wang,Yi Guo","doi":"10.1109/tmi.2024.3459910","DOIUrl":null,"url":null,"abstract":"Colorectal cancer plays a dominant role in cancer-related deaths, primarily due to the absence of obvious early-stage symptoms. Whole-stage colorectal disease diagnosis is crucial for assessing lesion evolution and determining treatment plans. However, locality difference and disease progression lead to intra-class disparities and inter-class similarities for colorectal lesion representation. In addition, interpretable algorithms explaining the lesion progression are still lacking, making the prediction process a \"black box\". In this paper, we propose IPNet, a dual-branch interpretable network with progressive loss for whole-stage colorectal disease diagnosis. The dual-branch architecture captures unbiased features representing diverse localities to suppress intra-class variation. The progressive loss function considers inter-class relationship, using prior knowledge of disease evolution to guide classification. Furthermore, a novel Grain-CAM is designed to interpret IPNet by visualizing pixel-wise attention maps from shallow to deep layers, providing regions semantically related to IPNet's progressive classification. We conducted whole-stage diagnosis on two image modalities, i.e., colorectal lesion classification on 129,893 endoscopic optical images and rectal tumor T-staging on 11,072 endoscopic ultrasound images. IPNet is shown to surpass other state-of-the-art algorithms, accordingly achieving an accuracy of 93.15% and 89.62%. Especially, it establishes effective decision boundaries for challenges like polyp vs. adenoma and T2 vs. T3. The results demonstrate an explainable attempt for colorectal lesion classification at a whole-stage level, and rectal tumor T-staging by endoscopic ultrasound is also unprecedentedly explored. IPNet is expected to be further applied, assisting physicians in whole-stage disease diagnosis and enhancing diagnostic interpretability.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"21 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tmi.2024.3459910","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer plays a dominant role in cancer-related deaths, primarily due to the absence of obvious early-stage symptoms. Whole-stage colorectal disease diagnosis is crucial for assessing lesion evolution and determining treatment plans. However, locality difference and disease progression lead to intra-class disparities and inter-class similarities for colorectal lesion representation. In addition, interpretable algorithms explaining the lesion progression are still lacking, making the prediction process a "black box". In this paper, we propose IPNet, a dual-branch interpretable network with progressive loss for whole-stage colorectal disease diagnosis. The dual-branch architecture captures unbiased features representing diverse localities to suppress intra-class variation. The progressive loss function considers inter-class relationship, using prior knowledge of disease evolution to guide classification. Furthermore, a novel Grain-CAM is designed to interpret IPNet by visualizing pixel-wise attention maps from shallow to deep layers, providing regions semantically related to IPNet's progressive classification. We conducted whole-stage diagnosis on two image modalities, i.e., colorectal lesion classification on 129,893 endoscopic optical images and rectal tumor T-staging on 11,072 endoscopic ultrasound images. IPNet is shown to surpass other state-of-the-art algorithms, accordingly achieving an accuracy of 93.15% and 89.62%. Especially, it establishes effective decision boundaries for challenges like polyp vs. adenoma and T2 vs. T3. The results demonstrate an explainable attempt for colorectal lesion classification at a whole-stage level, and rectal tumor T-staging by endoscopic ultrasound is also unprecedentedly explored. IPNet is expected to be further applied, assisting physicians in whole-stage disease diagnosis and enhancing diagnostic interpretability.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.