Advances in Shell and Core Engineering of Carbonized Polymer Dots for Enhanced Applications

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-19 DOI:10.1021/acs.accounts.4c00516
Boyang Wang, Geoffrey I. N. Waterhouse, Bai Yang, Siyu Lu
{"title":"Advances in Shell and Core Engineering of Carbonized Polymer Dots for Enhanced Applications","authors":"Boyang Wang, Geoffrey I. N. Waterhouse, Bai Yang, Siyu Lu","doi":"10.1021/acs.accounts.4c00516","DOIUrl":null,"url":null,"abstract":"Carbon dots (CDs), as a novel type of fluorescent nanocarbon material, attract widespread attention in nanomedicine, optoelectronic devices, and energy conversion/storage due to their excellent optical properties, low toxicity, and high stability. They can be classified as graphene quantum dots, carbon quantum dots, and carbonized polymer dots (CPDs). Among these, CPDs exhibit tunable structures and components that allow fine-tuning of their optoelectronic properties, making them one of the most popular types of CDs in recent years. However, the structural complexity of CPDs stimulates deep exploration of the relationship between their unique structure and luminescent performance. As an organic–inorganic hybrid system, the diversity of self-limited quantum state carbon cores and polymer-hybrid shell layers makes understanding the underlying mechanisms and structure–property relationships in CPDs a very challenging task. In this context, elucidating the structural composition of CPDs and the factors that affect their optical properties is vital if the enormous potential of CPDs is to be realized. Achieving controllable structures with predefined optical properties via the adoption of specific functionalization strategies is the prized goal of current researchers in the field.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00516","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dots (CDs), as a novel type of fluorescent nanocarbon material, attract widespread attention in nanomedicine, optoelectronic devices, and energy conversion/storage due to their excellent optical properties, low toxicity, and high stability. They can be classified as graphene quantum dots, carbon quantum dots, and carbonized polymer dots (CPDs). Among these, CPDs exhibit tunable structures and components that allow fine-tuning of their optoelectronic properties, making them one of the most popular types of CDs in recent years. However, the structural complexity of CPDs stimulates deep exploration of the relationship between their unique structure and luminescent performance. As an organic–inorganic hybrid system, the diversity of self-limited quantum state carbon cores and polymer-hybrid shell layers makes understanding the underlying mechanisms and structure–property relationships in CPDs a very challenging task. In this context, elucidating the structural composition of CPDs and the factors that affect their optical properties is vital if the enormous potential of CPDs is to be realized. Achieving controllable structures with predefined optical properties via the adoption of specific functionalization strategies is the prized goal of current researchers in the field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强应用的碳化聚合物点的外壳和内核工程研究进展
碳点(CD)作为一种新型的荧光纳米碳材料,因其优异的光学性能、低毒性和高稳定性,在纳米医学、光电器件和能量转换/存储领域受到广泛关注。它们可分为石墨烯量子点、碳量子点和碳化聚合物点(CPDs)。其中,碳化聚合物点(CPDs)具有可调结构和成分,可对其光电特性进行微调,是近年来最受欢迎的光盘类型之一。然而,CPD 结构的复杂性促使人们深入探索其独特结构与发光性能之间的关系。作为一种有机-无机杂化体系,自限量子态碳核和聚合物-杂化壳层的多样性使得理解 CPD 的内在机理和结构-性能关系成为一项极具挑战性的任务。在这种情况下,要实现 CPD 的巨大潜力,阐明 CPD 的结构组成以及影响其光学特性的因素至关重要。通过采用特定的功能化策略实现具有预定光学特性的可控结构,是目前该领域研究人员的首要目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Late-Stage Halogenation of Complex Substrates with Readily Available Halogenating Reagents Advances in Shell and Core Engineering of Carbonized Polymer Dots for Enhanced Applications Ligand-to-Metal Charge Transfer (LMCT) Catalysis: Harnessing Simple Cerium Catalysts for Selective Functionalization of Inert C–H and C–C Bonds Small Ring Molecules Comprising 3-6 Boron Atoms: An Account on Synthesis, Structure, and Orbital Engineering. Hydride Transfer-Based CO2 Reduction Catalysis: Navigating Metal Hydride to Organic Hydride in the Catalytic Loop.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1