Jinpeng Huang, Changlu Zhou, Chunping Li and Zhong Xin*,
{"title":"Study on Continuous-Flow Process for Direct Synthesis of p-Aminophenol from Nitrobenzene","authors":"Jinpeng Huang, Changlu Zhou, Chunping Li and Zhong Xin*, ","doi":"10.1021/acs.oprd.4c0027510.1021/acs.oprd.4c00275","DOIUrl":null,"url":null,"abstract":"<p ><i>p</i>-Aminophenol (PAP) is an important organic chemical raw material and a pharmaceutical intermediate. Catalytic hydrogenation of nitrobenzene (NB) is an environmentally friendly and economical production method. However, the one-pot method in a traditional batch reactor often leads to a low reaction rate and low PAP yield at low hydrogen pressure. In this work, a continuous-flow process for direct synthesis of PAP by the hydrogenation–rearrangement of NB was established, which provides a safe, green, and efficient method for the synthesis of PAP. The effects of various reaction conditions were investigated. Under the optimal reaction conditions, a 94.5% yield of phenylhydroxylamine (PHA) was achieved in the hydrogenation process under atmospheric pressure. The catalyst activity remained good for 50 h of continuous operation. Solvent tetrahydrofuran (THF) and additive 4-dimethylaminopyridine (DMAP) are more conducive to the synthesis of PHA than other solvents. For different acid catalysts in the Bamberger rearrangement with an equivalent concentration of 2 N, stronger acidity led to greater conversion of PHA. The Bamberger rearrangement is solvent-sensitive, and aprotic solvents will reduce the conversion of PHA. The full continuous process for direct synthesis of PAP from NB was studied by mixing sulfuric acid solution and PHA/THF solution with a microfluidic chip. The conversion of PHA was 100% with a low H<sub>2</sub>SO<sub>4</sub> concentration of 1 wt % at a residence time of 13.6 min. The process was reduced from the hour level of the batch process to the minute level, and the H<sub>2</sub>SO<sub>4</sub> concentration was reduced.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.4c00275","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
p-Aminophenol (PAP) is an important organic chemical raw material and a pharmaceutical intermediate. Catalytic hydrogenation of nitrobenzene (NB) is an environmentally friendly and economical production method. However, the one-pot method in a traditional batch reactor often leads to a low reaction rate and low PAP yield at low hydrogen pressure. In this work, a continuous-flow process for direct synthesis of PAP by the hydrogenation–rearrangement of NB was established, which provides a safe, green, and efficient method for the synthesis of PAP. The effects of various reaction conditions were investigated. Under the optimal reaction conditions, a 94.5% yield of phenylhydroxylamine (PHA) was achieved in the hydrogenation process under atmospheric pressure. The catalyst activity remained good for 50 h of continuous operation. Solvent tetrahydrofuran (THF) and additive 4-dimethylaminopyridine (DMAP) are more conducive to the synthesis of PHA than other solvents. For different acid catalysts in the Bamberger rearrangement with an equivalent concentration of 2 N, stronger acidity led to greater conversion of PHA. The Bamberger rearrangement is solvent-sensitive, and aprotic solvents will reduce the conversion of PHA. The full continuous process for direct synthesis of PAP from NB was studied by mixing sulfuric acid solution and PHA/THF solution with a microfluidic chip. The conversion of PHA was 100% with a low H2SO4 concentration of 1 wt % at a residence time of 13.6 min. The process was reduced from the hour level of the batch process to the minute level, and the H2SO4 concentration was reduced.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.