Improved estimation of daily blue-sky snow shortwave albedo from MODIS data and reanalysis information

IF 5.7 Q1 ENVIRONMENTAL SCIENCES Science of Remote Sensing Pub Date : 2024-09-16 DOI:10.1016/j.srs.2024.100163
Anxin Ding , Shunlin Liang , Han Ma , Tao He , Aolin Jia , Qian Wang
{"title":"Improved estimation of daily blue-sky snow shortwave albedo from MODIS data and reanalysis information","authors":"Anxin Ding ,&nbsp;Shunlin Liang ,&nbsp;Han Ma ,&nbsp;Tao He ,&nbsp;Aolin Jia ,&nbsp;Qian Wang","doi":"10.1016/j.srs.2024.100163","DOIUrl":null,"url":null,"abstract":"<div><p>Snow albedo is a key geophysical parameter that controls the energy exchanges between the atmosphere and Earth's surfaces and has been widely utilized in climatic and environmental change studies. However, recent studies have demonstrated that current albedo satellite products still have large uncertainties in snow-covered areas. In this study, we estimated the blue-sky shortwave albedo of snow surfaces using the eXtreme Gradient Boosting (XGBoost) algorithm with Moderate Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere (TOA) reflectance values, ERA-5 land reanalysis snow parameters (e.g., snow cover, snow density and snow depth water equivalent) and in situ measurements. In the XGBoost model, the MODIS MCD43 albedo values were input as prior knowledge, and the random sample validation results showed that the R<sup>2</sup> and root mean square error (RMSE) values of this model were approximately 0.953 and 0.044, respectively. The typical sites for independent validation were subjected to in situ measurements at the UPE_L, AWS5, and CA_ARB sites. Finally, the retrieved XGBoost albedo values were compared with the official NASA MODIS (MCD43, collection 6), the Global Land Surface Satellite (GLASS), and the National Oceanic and Atmospheric Administration (NOAA) Visible Infrared Imaging Radiometer Suite (VIIRS) SURFALB albedo products. The validation results indicated that the proposed approach achieved much greater accuracy (RMSE = 0.052, bias = 0.002) than did the corresponding official MODIS (RMSE = 0.087, bias = −0.033), GLASS (RMSE = 0.089, bias = −0.031) and VIIRS SURFALB albedo (RMSE = 0.100, bias = −0.032) products. The improved shortwave albedo captured the rapid temporal changes in surface snow conditions.</p></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"10 ","pages":"Article 100163"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666017224000476/pdfft?md5=e99e57265aeb05eddcd22708dbcf028e&pid=1-s2.0-S2666017224000476-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Snow albedo is a key geophysical parameter that controls the energy exchanges between the atmosphere and Earth's surfaces and has been widely utilized in climatic and environmental change studies. However, recent studies have demonstrated that current albedo satellite products still have large uncertainties in snow-covered areas. In this study, we estimated the blue-sky shortwave albedo of snow surfaces using the eXtreme Gradient Boosting (XGBoost) algorithm with Moderate Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere (TOA) reflectance values, ERA-5 land reanalysis snow parameters (e.g., snow cover, snow density and snow depth water equivalent) and in situ measurements. In the XGBoost model, the MODIS MCD43 albedo values were input as prior knowledge, and the random sample validation results showed that the R2 and root mean square error (RMSE) values of this model were approximately 0.953 and 0.044, respectively. The typical sites for independent validation were subjected to in situ measurements at the UPE_L, AWS5, and CA_ARB sites. Finally, the retrieved XGBoost albedo values were compared with the official NASA MODIS (MCD43, collection 6), the Global Land Surface Satellite (GLASS), and the National Oceanic and Atmospheric Administration (NOAA) Visible Infrared Imaging Radiometer Suite (VIIRS) SURFALB albedo products. The validation results indicated that the proposed approach achieved much greater accuracy (RMSE = 0.052, bias = 0.002) than did the corresponding official MODIS (RMSE = 0.087, bias = −0.033), GLASS (RMSE = 0.089, bias = −0.031) and VIIRS SURFALB albedo (RMSE = 0.100, bias = −0.032) products. The improved shortwave albedo captured the rapid temporal changes in surface snow conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用中分辨率成像系统数据和再分析信息改进对每日蓝天积雪短波反照率的估算
雪的反照率是一个关键的地球物理参数,控制着大气与地球表面之间的能量交换,已被广泛用于气候和环境变化研究。然而,最近的研究表明,目前的反照率卫星产品在积雪地区仍有很大的不确定性。在本研究中,我们利用极端梯度提升(XGBoost)算法,结合中分辨率成像分光仪(MODIS)的大气顶反射率值、ERA-5 陆地再分析雪参数(如雪盖度、雪密度和雪深水当量)以及实地测量数据,估算了雪表面的蓝天短波反照率。随机抽样验证结果表明,该模型的 R2 值和均方根误差值分别约为 0.953 和 0.044。进行独立验证的典型站点是 UPE_L、AWS5 和 CA_ARB 站点。最后,将获取的 XGBoost 反照率值与 NASA MODIS(MCD43,第 6 集)、全球陆地表面卫星(GLASS)和美国国家海洋和大气管理局(NOAA)可见红外成像辐射计套件(VIIRS)SURFALB 反照率产品进行了比较。验证结果表明,与相应的官方 MODIS(RMSE = 0.087,偏差 = -0.033)、GLASS(RMSE = 0.089,偏差 = -0.031)和 VIIRS SURFALB 反照率(RMSE = 0.100,偏差 = -0.032)产品相比,建议的方法实现了更高的精度(RMSE = 0.052,偏差 = 0.002)。改进后的短波反照率捕捉到了地表积雪状况的快速时间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
期刊最新文献
Coastal vertical land motion across Southeast Asia derived from combining tide gauge and satellite altimetry observations Identifying thermokarst lakes using deep learning and high-resolution satellite images A two-stage deep learning architecture for detection global coastal and offshore submesoscale ocean eddy using SDGSAT-1 multispectral imagery A comprehensive evaluation of satellite-based and reanalysis soil moisture products over the upper Blue Nile Basin, Ethiopia A comprehensive review of rice mapping from satellite data: Algorithms, product characteristics and consistency assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1