BaZr(Ce,Y)O3-Pr-Doped CeO2 Double Columnar for the Cathodic Functional Layer of Ni–Fe Metal-Supported Protonic Ceramic Fuel Cells

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-09 DOI:10.1021/acsaem.4c0152910.1021/acsaem.4c01529
Hyo-Young Kim, Motonori Watanabe, Jun Tae Song, Miki Inada and Tatsumi Ishihara*, 
{"title":"BaZr(Ce,Y)O3-Pr-Doped CeO2 Double Columnar for the Cathodic Functional Layer of Ni–Fe Metal-Supported Protonic Ceramic Fuel Cells","authors":"Hyo-Young Kim,&nbsp;Motonori Watanabe,&nbsp;Jun Tae Song,&nbsp;Miki Inada and Tatsumi Ishihara*,&nbsp;","doi":"10.1021/acsaem.4c0152910.1021/acsaem.4c01529","DOIUrl":null,"url":null,"abstract":"<p >Metal-supported protonic ceramic fuel cells were prepared, and the effects of a double columnar layer at the cathode side of BaZr<sub>0.44</sub>Ce<sub>0.36</sub>Y<sub>0.2</sub>O<sub>3</sub> (BZCY) on power density and open-circuit voltage (OCV) were studied. The double columnar structure of Pr<sub>0.2</sub>Ce<sub>0.8</sub>O<sub>2</sub> (PrDC) and BZCY was prepared with pulsed laser deposition. It was found that the insertion of the double columnar layer was highly effective for increasing the power density and OCV. The optimum composition of the double columnar was BZCY:PrDC = 7:3, with a thickness of 200 nm. The power density of PCFCs with the BZCY-PrDC double columnar reached 413 mW/cm<sup>2</sup>, and the OCV was approximately 1.05 V at 873 K, which is six times higher than that of a cell without a functional layer. The high power density of the cell was attributed to the decreased overpotential of the cathode. Therefore, the BZCY-PrDC double columnar layer is effective in expanding the reaction site by increasing the proton concentration at the cathodic interface.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01529","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-supported protonic ceramic fuel cells were prepared, and the effects of a double columnar layer at the cathode side of BaZr0.44Ce0.36Y0.2O3 (BZCY) on power density and open-circuit voltage (OCV) were studied. The double columnar structure of Pr0.2Ce0.8O2 (PrDC) and BZCY was prepared with pulsed laser deposition. It was found that the insertion of the double columnar layer was highly effective for increasing the power density and OCV. The optimum composition of the double columnar was BZCY:PrDC = 7:3, with a thickness of 200 nm. The power density of PCFCs with the BZCY-PrDC double columnar reached 413 mW/cm2, and the OCV was approximately 1.05 V at 873 K, which is six times higher than that of a cell without a functional layer. The high power density of the cell was attributed to the decreased overpotential of the cathode. Therefore, the BZCY-PrDC double columnar layer is effective in expanding the reaction site by increasing the proton concentration at the cathodic interface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 Ni-Fe 金属支撑质子陶瓷燃料电池阴极功能层的 BaZr(Ce,Y)O3-Pr-掺杂 CeO2 双柱体
制备了金属支撑质子陶瓷燃料电池,并研究了 BaZr0.44Ce0.36Y0.2O3 (BZCY) 阴极双柱状层对功率密度和开路电压 (OCV) 的影响。采用脉冲激光沉积法制备了 Pr0.2Ce0.8O2 (PrDC) 和 BZCY 的双柱状结构。研究发现,插入双柱状层对提高功率密度和 OCV 非常有效。双柱状层的最佳组成为 BZCY:PrDC = 7:3,厚度为 200 nm。带有 BZCY-PrDC 双柱状层的 PCFC 功率密度达到 413 mW/cm2,在 873 K 时的 OCV 约为 1.05 V,是不带功能层电池的六倍。电池的高功率密度归功于阴极过电位的降低。因此,BZCY-PrDC 双柱状层通过增加阴极界面的质子浓度,有效地扩大了反应场所。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Organic Battery Materials Fe-Induced Surface Regulation and Accelerated Hydrogen Evolution Kinetics in γ-MnS Three-Dimensional Microarchitectures Unprecedented InOOH Hexagonal Nanoplates for Highly Selective Synthesis of Methanol via Moderately Photothermal CO2 Hydrogenation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1