Inverted-Structured Perovskite Solar Cells with a TiO2 Electron-Collector Layer Formed at Room Temperature from Titanium Halide Solutions

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-09 DOI:10.1021/acsaem.4c0122610.1021/acsaem.4c01226
Atsushi Kogo*, Ryo Ishikawa and Takurou N. Murakami, 
{"title":"Inverted-Structured Perovskite Solar Cells with a TiO2 Electron-Collector Layer Formed at Room Temperature from Titanium Halide Solutions","authors":"Atsushi Kogo*,&nbsp;Ryo Ishikawa and Takurou N. Murakami,&nbsp;","doi":"10.1021/acsaem.4c0122610.1021/acsaem.4c01226","DOIUrl":null,"url":null,"abstract":"<p >Organohalide perovskites are promising light-harvesting materials for solar cells because of their ease of synthesis and high performance. P-i-n-structured perovskite solar cells have the advantage of a low processing temperature (&lt;150 °C) for applications in flexible solar cells. However, they are limited by the high cost and low stability of fullerene electron collectors. In this study, we developed a solution-based method for synthesizing TiO<sub>2</sub> at room temperature using titanium halide precursors and employed it as an electron collector. Uniform and dense TiO<sub>2</sub> was formed without using vacuum processes by the oxidation of TiI<sub>4</sub> in ambient air. A power conversion efficiency (PCE) of 12.6% was obtained. Our study paves the way for synthesizing efficient and affordable solar cells at a mass scale.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01226","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organohalide perovskites are promising light-harvesting materials for solar cells because of their ease of synthesis and high performance. P-i-n-structured perovskite solar cells have the advantage of a low processing temperature (<150 °C) for applications in flexible solar cells. However, they are limited by the high cost and low stability of fullerene electron collectors. In this study, we developed a solution-based method for synthesizing TiO2 at room temperature using titanium halide precursors and employed it as an electron collector. Uniform and dense TiO2 was formed without using vacuum processes by the oxidation of TiI4 in ambient air. A power conversion efficiency (PCE) of 12.6% was obtained. Our study paves the way for synthesizing efficient and affordable solar cells at a mass scale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有由卤化钛溶液在室温下形成的 TiO2 电子集电层的倒置结构 Perovskite 太阳能电池
有机卤化物过氧化物因其易于合成和高性能而成为太阳能电池中前景广阔的光收集材料。Pi-n 结构的过氧化物太阳能电池具有加工温度低(150 °C)的优势,可应用于柔性太阳能电池。然而,富勒烯电子收集器的高成本和低稳定性限制了它们的应用。在这项研究中,我们开发了一种基于溶液的方法,利用卤化钛前驱体在室温下合成二氧化钛,并将其用作电子收集器。通过在环境空气中氧化 TiI4,在不使用真空工艺的情况下形成了均匀致密的 TiO2。其功率转换效率(PCE)达到了 12.6%。我们的研究为大规模合成高效且经济实惠的太阳能电池铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Organic Battery Materials Fe-Induced Surface Regulation and Accelerated Hydrogen Evolution Kinetics in γ-MnS Three-Dimensional Microarchitectures Unprecedented InOOH Hexagonal Nanoplates for Highly Selective Synthesis of Methanol via Moderately Photothermal CO2 Hydrogenation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1