Mechanistic Insights into Rh-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Silazanes: The Origin of Enantioselectivity

IF 2.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Organometallics Pub Date : 2024-09-11 DOI:10.1021/acs.organomet.4c0026610.1021/acs.organomet.4c00266
Feiyun Jia*, Chenghua Zhang, Yongsheng Yang and Bo Zhang*, 
{"title":"Mechanistic Insights into Rh-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Silazanes: The Origin of Enantioselectivity","authors":"Feiyun Jia*,&nbsp;Chenghua Zhang,&nbsp;Yongsheng Yang and Bo Zhang*,&nbsp;","doi":"10.1021/acs.organomet.4c0026610.1021/acs.organomet.4c00266","DOIUrl":null,"url":null,"abstract":"<p >The catalytic asymmetric synthesis of silazanes is always a challenging task. Here, a highly enantioselective synthesis of silicon-stereogenic silazanes was investigated to elucidate the protocol’s principal features and to clarify the origin of the enantioselectivity by using DFT calculations. The computational results indicate that the total free energy barrier for the conversion is 19.9 kcal/mol, which is reasonable given the current reaction conditions. Consistent with the experimental findings, the calculations indicate that σ-bond metathesis (N–H bond cleavage) is the rate-determining step for this transformation. Both pathways 1 and 2 toward <i>S</i>- or <i>R</i>-configuration products were investigated computationally. We found that the main enantiomer product of this transformation is determined by the kinetically more favorable main reaction pathway 1. Calculations indicate that the loss of one or the other H on the dihydrosilane will lock the product chirality; therefore, the oxidative addition is the enantioselectivity-determining step. Non-covalent interaction (NCI) analysis confirms that a difference in steric hindrance is responsible for the enantioselectivity of the protocol. Additionally, calculations confirm that the electron-donating group on aniline appropriately lowers the free energy barrier relative to the electron-withdrawing group (Δ<i>G</i> = 15.5 vs 21.6 kcal/mol), thereby accelerating the conversion.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organometallics","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.organomet.4c00266","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The catalytic asymmetric synthesis of silazanes is always a challenging task. Here, a highly enantioselective synthesis of silicon-stereogenic silazanes was investigated to elucidate the protocol’s principal features and to clarify the origin of the enantioselectivity by using DFT calculations. The computational results indicate that the total free energy barrier for the conversion is 19.9 kcal/mol, which is reasonable given the current reaction conditions. Consistent with the experimental findings, the calculations indicate that σ-bond metathesis (N–H bond cleavage) is the rate-determining step for this transformation. Both pathways 1 and 2 toward S- or R-configuration products were investigated computationally. We found that the main enantiomer product of this transformation is determined by the kinetically more favorable main reaction pathway 1. Calculations indicate that the loss of one or the other H on the dihydrosilane will lock the product chirality; therefore, the oxidative addition is the enantioselectivity-determining step. Non-covalent interaction (NCI) analysis confirms that a difference in steric hindrance is responsible for the enantioselectivity of the protocol. Additionally, calculations confirm that the electron-donating group on aniline appropriately lowers the free energy barrier relative to the electron-withdrawing group (ΔG = 15.5 vs 21.6 kcal/mol), thereby accelerating the conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对 Rh 催化不对称合成硅烷的机理认识:不对称选择性的起源
硅烷的催化不对称合成一直是一项具有挑战性的任务。在此,我们利用 DFT 计算研究了硅稳定硅烷的高对映选择性合成,以阐明该方案的主要特征,并阐明对映选择性的来源。计算结果表明,在当前的反应条件下,转化的总自由能障为 19.9 kcal/mol,这是合理的。计算结果与实验结果一致,表明σ键元合成(N-H 键裂解)是这一转化的决定性步骤。我们通过计算研究了通向 S 或 R 构型产物的途径 1 和 2。我们发现,这种转化的主要对映体产物是由动力学上更有利的主要反应途径 1 决定的。计算表明,失去二氢硅烷上的一个或另一个 H 将锁定产物的手性;因此,氧化加成是决定对映体选择性的步骤。非共价相互作用(NCI)分析证实,立体阻碍的差异是该方案产生对映体选择性的原因。此外,计算还证实,苯胺上的供电子基团相对于抽电子基团适当地降低了自由能垒(ΔG = 15.5 vs 21.6 kcal/mol),从而加速了转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Organometallics
Organometallics 化学-无机化学与核化学
CiteScore
5.60
自引率
7.10%
发文量
382
审稿时长
1.7 months
期刊介绍: Organometallics is the flagship journal of organometallic chemistry and records progress in one of the most active fields of science, bridging organic and inorganic chemistry. The journal publishes Articles, Communications, Reviews, and Tutorials (instructional overviews) that depict research on the synthesis, structure, bonding, chemical reactivity, and reaction mechanisms for a variety of applications, including catalyst design and catalytic processes; main-group, transition-metal, and lanthanide and actinide metal chemistry; synthetic aspects of polymer science and materials science; and bioorganometallic chemistry.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Alternate Geometries in the Cobalt-Catalyzed Hydroacylation of Dienes Facilitate a High Spin Mechanism: A Density Functional Theory Study Association and Aggregation of Magnesium Organocuprates Flash Communication: Rhodium Complexes of Acetamide-Derived PAlP Pincer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1