Bifidobacterium pseudolongum-Derived Bile Acid from Dietary Carvacrol and Thymol Supplementation Attenuates Colitis via cGMP-PKG-mTORC1 Pathway

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-09-23 DOI:10.1002/advs.202406917
Ke Zhang, Yangbin Xu, Yining Zheng, Ting Zhang, Yujiang Wu, Yiting Yan, Yu Lei, Xi Cao, Xiaolong Wang, Frances Yan, Zhaomin Lei, Daniel Brugger, Yulin Chen, Lu Deng, Yuxin Yang
{"title":"Bifidobacterium pseudolongum-Derived Bile Acid from Dietary Carvacrol and Thymol Supplementation Attenuates Colitis via cGMP-PKG-mTORC1 Pathway","authors":"Ke Zhang,&nbsp;Yangbin Xu,&nbsp;Yining Zheng,&nbsp;Ting Zhang,&nbsp;Yujiang Wu,&nbsp;Yiting Yan,&nbsp;Yu Lei,&nbsp;Xi Cao,&nbsp;Xiaolong Wang,&nbsp;Frances Yan,&nbsp;Zhaomin Lei,&nbsp;Daniel Brugger,&nbsp;Yulin Chen,&nbsp;Lu Deng,&nbsp;Yuxin Yang","doi":"10.1002/advs.202406917","DOIUrl":null,"url":null,"abstract":"<p>Carvacrol and thymol (CAT) have been widely recognized for their antimicrobial and anti-inflammatory properties, yet their specific effects on colitis and the mechanisms involved remain insufficiently understood. This study establishes a causative link between CAT administration and colitis mitigation, primarily through the enhancement of <i>Bifidobacterium pseudolongum</i> abundance in the colon. This increase promotes the production of secondary bile acids, particularly hyodeoxycholic acid (HDCA) and 12-ketodeoxycholic acid (12-KCAC), which exert anti-inflammatory effects. Notably, CAT does not alleviate colitis symptoms in germ-free mice, indicating the necessity of gut microbiota. This research uncovers a novel regulatory mechanism where HDCA and 12-KCAC inhibit colonic inflammation by reducing the expression of transmembrane guanylate cyclase 1A in the colonic epithelium. This downregulation elevates intracellular Ca<sup>2+</sup> and cGMP levels, activating protein kinase G (PKG). Activated PKG subsequently suppresses the mTOR signaling pathway, thereby ameliorating dextran sulfate sodium (DSS)-induced colonic damage. These findings highlight potential metabolites and therapeutic targets for preventing and treating colitis. <i>Bifidobacterium pseudolongum</i>, HDCA, and 12-KCAC emerge as promising candidates for therapeutic interventions in colitis and related disorders characterized by impaired tight junction function.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 43","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202406917","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carvacrol and thymol (CAT) have been widely recognized for their antimicrobial and anti-inflammatory properties, yet their specific effects on colitis and the mechanisms involved remain insufficiently understood. This study establishes a causative link between CAT administration and colitis mitigation, primarily through the enhancement of Bifidobacterium pseudolongum abundance in the colon. This increase promotes the production of secondary bile acids, particularly hyodeoxycholic acid (HDCA) and 12-ketodeoxycholic acid (12-KCAC), which exert anti-inflammatory effects. Notably, CAT does not alleviate colitis symptoms in germ-free mice, indicating the necessity of gut microbiota. This research uncovers a novel regulatory mechanism where HDCA and 12-KCAC inhibit colonic inflammation by reducing the expression of transmembrane guanylate cyclase 1A in the colonic epithelium. This downregulation elevates intracellular Ca2+ and cGMP levels, activating protein kinase G (PKG). Activated PKG subsequently suppresses the mTOR signaling pathway, thereby ameliorating dextran sulfate sodium (DSS)-induced colonic damage. These findings highlight potential metabolites and therapeutic targets for preventing and treating colitis. Bifidobacterium pseudolongum, HDCA, and 12-KCAC emerge as promising candidates for therapeutic interventions in colitis and related disorders characterized by impaired tight junction function.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过cGMP-PKG-mTORC1途径补充由假龙胆双歧杆菌产生的胆汁酸可减轻结肠炎
香芹酚和百里酚(CAT)的抗菌和抗炎特性已得到广泛认可,但它们对结肠炎的具体影响和相关机制仍未得到充分了解。本研究确定了服用 CAT 与减轻结肠炎之间的因果关系,这主要是通过提高结肠中假龙双歧杆菌的丰度来实现的。这种增加促进了次级胆汁酸的产生,尤其是产生了具有抗炎作用的次脱氧胆酸(HDCA)和 12-酮脱氧胆酸(12-KCAC)。值得注意的是,CAT 并不能减轻无菌小鼠的结肠炎症状,这表明肠道微生物群是必要的。这项研究发现了一种新的调控机制,即 HDCA 和 12-KCAC 通过减少结肠上皮中跨膜鸟苷酸环化酶 1A 的表达来抑制结肠炎症。这种下调会提高细胞内 Ca2+ 和 cGMP 水平,激活蛋白激酶 G (PKG)。激活的 PKG 随后会抑制 mTOR 信号通路,从而改善右旋糖酐硫酸钠(DSS)诱导的结肠损伤。这些发现凸显了预防和治疗结肠炎的潜在代谢物和治疗靶点。双歧杆菌、HDCA 和 12-KCAC 有希望成为治疗结肠炎和以紧密连接功能受损为特征的相关疾病的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
"Brick-Mortar-Binder" Design toward Highly Elastic, Hydrophobic, and Flame-Retardant Thermal Insulator. Boosted Efficiency of Fe2O3 for Photocatalytic CO2 Reduction via Engineering Fe-O-Ti Bonding. Cytoskeletal Vimentin Directs Cell-Cell Transmission of Hepatitis C Virus. Slow Metabolism-Driven Amplification of Hepatic PPARγ Agonism Mediates Benzbromarone-Induced Obesity-Specific Liver Injury. Tumor Site-Specific In Vivo Theranostics Enabled by Microenvironment-Dependent Chemical Transformation and Self-Amplifying Effect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1