A simple and accurate method for the determination of Rh, Pd, and Pt in e-waste and spent automotive catalysts using HR-CS FAAS for assessing the value of secondary raw materials.
Magda Zabielska-Konopka, Elżbieta Zambrzycka-Szelewa, Zofia Kowalewska, Beata Godlewska-Żyłkiewicz
{"title":"A simple and accurate method for the determination of Rh, Pd, and Pt in e-waste and spent automotive catalysts using HR-CS FAAS for assessing the value of secondary raw materials.","authors":"Magda Zabielska-Konopka, Elżbieta Zambrzycka-Szelewa, Zofia Kowalewska, Beata Godlewska-Żyłkiewicz","doi":"10.1016/j.talanta.2024.126894","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a simple and accurate method for the fast sequential determination of Rh, Pd, and Pt in spent automotive catalysts and e-wastes using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Extensive research was carried out in model systems on the impact of potential interfering substances on analyte's signals measured in two types of flame (air-C<sub>2</sub>H<sub>2</sub> and N<sub>2</sub>O-C<sub>2</sub>H<sub>2</sub>). Mutual analyte interactions were also taken into account. Different background corrections offered by the HR-CS AAS spectrometer were tested to obtain interference-free analyte signals and the best detectability. Using an air-C<sub>2</sub>H<sub>2</sub> flame and 1 % La solution as a spectrochemical buffer provided good sensitivity and accurate determinations of Rh, Pd, and Pt using a simple calibration graph. Microwave-assisted leaching of PGE from waste samples with aqua regia at 240 °C for 60 min efficiently leached all target metals, which significantly simplified and shortened the sample preparation step. The detectability of the method (detection limit of 0.4, 0.6, and 5 mg kg<sup>-1</sup> for Rh, Pd, and Pt, respectively) and precision (< 7 %) were satisfactory. The accuracy of the method was confirmed by analysis of certified reference materials (spent automotive catalyst (ERM-EB504), electronic scrap (BAM-M505a)), and calculated zeta score values. The recoveries for Rh, Pd, and Pt in ERM-EB504 were 93, 101, and 96 %, respectively, and for Pd in BAM-M505a, 97 %. The developed method can be used to assess the value of secondary raw materials, such as various types of spent catalysts and e-waste containing Rh, Pd, and Pt.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"281 ","pages":"126894"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126894","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a simple and accurate method for the fast sequential determination of Rh, Pd, and Pt in spent automotive catalysts and e-wastes using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Extensive research was carried out in model systems on the impact of potential interfering substances on analyte's signals measured in two types of flame (air-C2H2 and N2O-C2H2). Mutual analyte interactions were also taken into account. Different background corrections offered by the HR-CS AAS spectrometer were tested to obtain interference-free analyte signals and the best detectability. Using an air-C2H2 flame and 1 % La solution as a spectrochemical buffer provided good sensitivity and accurate determinations of Rh, Pd, and Pt using a simple calibration graph. Microwave-assisted leaching of PGE from waste samples with aqua regia at 240 °C for 60 min efficiently leached all target metals, which significantly simplified and shortened the sample preparation step. The detectability of the method (detection limit of 0.4, 0.6, and 5 mg kg-1 for Rh, Pd, and Pt, respectively) and precision (< 7 %) were satisfactory. The accuracy of the method was confirmed by analysis of certified reference materials (spent automotive catalyst (ERM-EB504), electronic scrap (BAM-M505a)), and calculated zeta score values. The recoveries for Rh, Pd, and Pt in ERM-EB504 were 93, 101, and 96 %, respectively, and for Pd in BAM-M505a, 97 %. The developed method can be used to assess the value of secondary raw materials, such as various types of spent catalysts and e-waste containing Rh, Pd, and Pt.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.