Dieudonne Tanue Nde, Dhananjaya Merum, Gyawali Ghanashyam, Jean Pierre Ndabakuranye, Mohamed A Habila, Arghya Narayan Banerjee, Sang Woo Joo, Theophile Niyitanga, Haekyoung Kim
{"title":"Electrochemical sensor featuring PdFeCo<sub>1-x</sub>ONPs on carbon paper for the sensitive determination of indole-3-lactic acid levels in serum samples.","authors":"Dieudonne Tanue Nde, Dhananjaya Merum, Gyawali Ghanashyam, Jean Pierre Ndabakuranye, Mohamed A Habila, Arghya Narayan Banerjee, Sang Woo Joo, Theophile Niyitanga, Haekyoung Kim","doi":"10.1016/j.talanta.2024.126919","DOIUrl":null,"url":null,"abstract":"<p><p>A highly sensitive and selective electrochemical sensing platform with self-assembled porous 3-D trimetallic (Pd, Fe, and Co) hybrid anchored on a cost-effective and high-conducting carbon paper (CP) synthesized via a facile and cost-effective hydrothermal impregnation and thermal reduction technique was developed for determining indole-3-lactic acid (ILA) levels in buffer and serum samples. Before the analytical phase, the composite (PdFeCo<sub>1-x</sub>ONPs@CP electrode) was thoroughly characterized, and different methods were used to investigate the electrochemical properties. The combination of tri-metallics with CP-fibers improved sensing capacities in the linear range of 0.05-30 μM, with sensitivity and limits of detection of and 0.165 ± 0.013 μA/μM and 7.8 ± 0. 2 nM, respectively, towards ILA determination. Furthermore, the developed sensing platform was utilized for the analyses of ILA in sigma, human normal, and alcohol use disorder patients' serum samples. Liquid chromatography in tandem with mass spectrometry was equally used to quantify ILA levels in the serum samples and the results of both methods were compared.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"281 ","pages":"126919"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126919","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A highly sensitive and selective electrochemical sensing platform with self-assembled porous 3-D trimetallic (Pd, Fe, and Co) hybrid anchored on a cost-effective and high-conducting carbon paper (CP) synthesized via a facile and cost-effective hydrothermal impregnation and thermal reduction technique was developed for determining indole-3-lactic acid (ILA) levels in buffer and serum samples. Before the analytical phase, the composite (PdFeCo1-xONPs@CP electrode) was thoroughly characterized, and different methods were used to investigate the electrochemical properties. The combination of tri-metallics with CP-fibers improved sensing capacities in the linear range of 0.05-30 μM, with sensitivity and limits of detection of and 0.165 ± 0.013 μA/μM and 7.8 ± 0. 2 nM, respectively, towards ILA determination. Furthermore, the developed sensing platform was utilized for the analyses of ILA in sigma, human normal, and alcohol use disorder patients' serum samples. Liquid chromatography in tandem with mass spectrometry was equally used to quantify ILA levels in the serum samples and the results of both methods were compared.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.