Construction of a pumpless gravity-driven vascularized Skin-on-a-Chip for the study of hepatocytotoxicity in percutaneous exposure to exogenous chemicals

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Biomedical Microdevices Pub Date : 2024-09-20 DOI:10.1007/s10544-024-00723-0
Su Zhou, Rui Li, Jie Sun, Minyang Gu, Dan Gao, Liming Tang, Jiangbo Zhu
{"title":"Construction of a pumpless gravity-driven vascularized Skin-on-a-Chip for the study of hepatocytotoxicity in percutaneous exposure to exogenous chemicals","authors":"Su Zhou,&nbsp;Rui Li,&nbsp;Jie Sun,&nbsp;Minyang Gu,&nbsp;Dan Gao,&nbsp;Liming Tang,&nbsp;Jiangbo Zhu","doi":"10.1007/s10544-024-00723-0","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of existing Skin-on-a-Chip (SoC) is constrained by the complex structures, the multiplicity of auxiliary devices, and the inability to evaluate exogenous chemicals that are hepatotoxic after percutaneous metabolism. In this study, a gravity-driven SoC without any auxiliary devices was constructed for the hepatocytotoxicity study of exogenous chemicals. The SoC possesses 3 layers of culture chambers, from top to bottom, for human skin equivalent (HSE), Human Umbilical Vein Endothelial Cells (HUVEC) and hepatocytes (HepG2), and the maintenance and expression capacity of the corresponding cells on the SoC were verified by specificity parameters. The reactivity of the SoC to exogenous chemicals was verified by 2-aminofluorene (2-AF). The SoC can realistically simulate the <i>in vivo</i> exposure process of exogenous chemicals that are percutaneously exposed and metabolized into the bloodstream and then to the liver to produce toxicity, and it can achieve the same effects on transcriptome as those of animal tests at lower exposure levels while examining multiple toxicological targets of the skin, vascular endothelial cells, and hepatocytes. Both in terms of species similarity, the principles of reduction, replacement and refinement (3R), or the level of exposure suggest that the present SoC has a degree of replacement for animal models in assessing exogenous chemicals, especially those that are hepatotoxic after percutaneous metabolism.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-024-00723-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of existing Skin-on-a-Chip (SoC) is constrained by the complex structures, the multiplicity of auxiliary devices, and the inability to evaluate exogenous chemicals that are hepatotoxic after percutaneous metabolism. In this study, a gravity-driven SoC without any auxiliary devices was constructed for the hepatocytotoxicity study of exogenous chemicals. The SoC possesses 3 layers of culture chambers, from top to bottom, for human skin equivalent (HSE), Human Umbilical Vein Endothelial Cells (HUVEC) and hepatocytes (HepG2), and the maintenance and expression capacity of the corresponding cells on the SoC were verified by specificity parameters. The reactivity of the SoC to exogenous chemicals was verified by 2-aminofluorene (2-AF). The SoC can realistically simulate the in vivo exposure process of exogenous chemicals that are percutaneously exposed and metabolized into the bloodstream and then to the liver to produce toxicity, and it can achieve the same effects on transcriptome as those of animal tests at lower exposure levels while examining multiple toxicological targets of the skin, vascular endothelial cells, and hepatocytes. Both in terms of species similarity, the principles of reduction, replacement and refinement (3R), or the level of exposure suggest that the present SoC has a degree of replacement for animal models in assessing exogenous chemicals, especially those that are hepatotoxic after percutaneous metabolism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建无泵重力驱动血管化皮肤芯片,用于研究经皮暴露于外源化学品时的肝细胞毒性。
现有的片上皮肤(SoC)结构复杂,辅助装置繁多,而且无法评估经皮代谢后具有肝毒性的外源性化学物质,这些都限制了片上皮肤(SoC)的使用。本研究构建了一个无任何辅助装置的重力驱动 SoC,用于外源化学物质的肝细胞毒性研究。SoC 从上到下有三层培养室,分别用于培养人皮肤等效物(HSE)、人脐静脉内皮细胞(HUVEC)和肝细胞(HepG2),并通过特异性参数验证了相应细胞在 SoC 上的维持和表达能力。2-aminofluorene (2-AF) 验证了 SoC 对外源化学物质的反应性。SoC能真实模拟外源化学物质经皮暴露并代谢到血液再到肝脏产生毒性的体内暴露过程,在检测皮肤、血管内皮细胞和肝细胞等多个毒理学靶点的同时,还能在较低暴露水平下实现与动物试验相同的转录组效应。无论是从物种相似性、减少、替代和改进(3R)原则,还是从暴露水平来看,目前的 SoC 在一定程度上可以替代动物模型来评估外源化学品,尤其是经皮代谢后具有肝毒性的化学品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
期刊最新文献
Smartphone-driven centrifugal microfluidics for diagnostics in resource limited settings Enhancing biomedical imaging: the role of nanoparticle-based contrast agents Panoramic review on polymeric microneedle arrays for clinical applications Construction of a pumpless gravity-driven vascularized Skin-on-a-Chip for the study of hepatocytotoxicity in percutaneous exposure to exogenous chemicals Functionalization of microbubbles in a microfluidic chip for biosensing application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1