The value of a nomogram model based on CT imaging features in differentiating duodenal gastrointestinal stromal tumors from pancreatic head neuroendocrine tumors.
Wenjie Yan, Haiyan Yu, Chuanfang Xu, Mengshu Zeng, Mingliang Wang
{"title":"The value of a nomogram model based on CT imaging features in differentiating duodenal gastrointestinal stromal tumors from pancreatic head neuroendocrine tumors.","authors":"Wenjie Yan, Haiyan Yu, Chuanfang Xu, Mengshu Zeng, Mingliang Wang","doi":"10.1007/s00261-024-04579-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To construct a nomogram model based on multi-slice spiral CT imaging features to predict and differentiate between duodenal gastrointestinal stromal tumors (GISTs) and pancreatic head neuroendocrine tumors (NENs), providing imaging evidence for clinical treatment decisions.</p><p><strong>Methods: </strong>A retrospective collection of clinical information, pathological results, and imaging data was conducted on 115 cases of duodenal GISTs and 76 cases of pancreatic head NENs confirmed by surgical pathology at Zhongshan Hospital Fudan University from November 2013 to November 2022. Comparative analysis was performed on the tumor's maximum diameter, shortest diameter, long diameter/short diameter ratio, tumor morphology, tumor border, central position of the lesion, lesion long-axis direction, the relationship between tumor and common bile duct (CBD), duodenal side ulceration of the lesion, calcification, cystic and solid proportion within the tumor, thickened feeding arteries, tumor neovascularization, distant metastasis, and CT values during plain and enhanced scans in arterial and venous phases. Statistical analysis was conducted using t-tests, Mann-Whitney U tests, and χ<sup>2</sup> tests. Univariate and multivariate logistic regression analyses were used to identify independent predictors for differentiating duodenal GISTs from pancreatic head NENs. Based on these independent predictors, a nomogram model was constructed, and the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of the model. The nomogram was validated using a calibration curve, and decision curve analysis was applied to assess the clinical application value of the nomogram.</p><p><strong>Results: </strong>There were significant differences in the duodenal GISTs group and the pancreatic head NENs group in terms of longest diameter (P < 0.001), shortest diameter (P < 0.001), plain CT value (P < 0.001), arterial phase CT value (P < 0.001), venous phase CT value (P = 0.002), lesion long-axis direction (P < 0.001), central position of the lesion (P < 0.001), the relationship between tumor and CBD(< 0.001), border (P = 0.004), calcification (P = 0.017), and distant metastasis (P = 0.018). Multivariate logistic regression analysis identified uncertain location (OR 0.040, 95% CI 0.003-0.549), near the duodenum (OR 0, 95% CI 0-0.009), with the lesion long-axis direction along the pancreas as a reference, along the duodenum (OR 0.106, 95% CI 0.010-1.156) or no significant difference (OR 4.946, 95% CI 0.453-54.017), and the relationship between tumor and CBD (OR 0.013, 95% CI 0.001-0.180), shortest diameter (OR 0.705, 95% CI 0.546-0.909), and calcification (OR 18.638, 95% CI 1.316-263.878) as independent risk factors for differentiating between duodenal GISTs and pancreatic head NENs (all P values < 0.05). The combined diagnostic model's AUC values based on central position of the lesion, calcification, lesion long axis orientation, the relationship between tumor and CBD, shortest diameter, and the joint diagnostic model were 0.937 (0.902-0.972), 0.700(0.624-0.776), 0.717(0.631-0.802), 0.559 (0.473-0.644), 0.680 (0.603-0.758), and 0.991(0.982-0.999), respectively, with a sensitivity of 97.3% and a specificity of 93.0% for the joint diagnostic model. The nomogram model's AUC value was 0.985(0.973-0.996), with a sensitivity and specificity of 94.7% and 93.9%, respectively. The calibration curve indicated good agreement between predicted and actual risks. Decision curve analysis verified the clinical application value of the nomogram.</p><p><strong>Conclusion: </strong>The nomogram model based on CT imaging features effectively differentiates between duodenal GISTs and pancreatic head NENs, aiding in more precise clinical treatment decisions.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-024-04579-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To construct a nomogram model based on multi-slice spiral CT imaging features to predict and differentiate between duodenal gastrointestinal stromal tumors (GISTs) and pancreatic head neuroendocrine tumors (NENs), providing imaging evidence for clinical treatment decisions.
Methods: A retrospective collection of clinical information, pathological results, and imaging data was conducted on 115 cases of duodenal GISTs and 76 cases of pancreatic head NENs confirmed by surgical pathology at Zhongshan Hospital Fudan University from November 2013 to November 2022. Comparative analysis was performed on the tumor's maximum diameter, shortest diameter, long diameter/short diameter ratio, tumor morphology, tumor border, central position of the lesion, lesion long-axis direction, the relationship between tumor and common bile duct (CBD), duodenal side ulceration of the lesion, calcification, cystic and solid proportion within the tumor, thickened feeding arteries, tumor neovascularization, distant metastasis, and CT values during plain and enhanced scans in arterial and venous phases. Statistical analysis was conducted using t-tests, Mann-Whitney U tests, and χ2 tests. Univariate and multivariate logistic regression analyses were used to identify independent predictors for differentiating duodenal GISTs from pancreatic head NENs. Based on these independent predictors, a nomogram model was constructed, and the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of the model. The nomogram was validated using a calibration curve, and decision curve analysis was applied to assess the clinical application value of the nomogram.
Results: There were significant differences in the duodenal GISTs group and the pancreatic head NENs group in terms of longest diameter (P < 0.001), shortest diameter (P < 0.001), plain CT value (P < 0.001), arterial phase CT value (P < 0.001), venous phase CT value (P = 0.002), lesion long-axis direction (P < 0.001), central position of the lesion (P < 0.001), the relationship between tumor and CBD(< 0.001), border (P = 0.004), calcification (P = 0.017), and distant metastasis (P = 0.018). Multivariate logistic regression analysis identified uncertain location (OR 0.040, 95% CI 0.003-0.549), near the duodenum (OR 0, 95% CI 0-0.009), with the lesion long-axis direction along the pancreas as a reference, along the duodenum (OR 0.106, 95% CI 0.010-1.156) or no significant difference (OR 4.946, 95% CI 0.453-54.017), and the relationship between tumor and CBD (OR 0.013, 95% CI 0.001-0.180), shortest diameter (OR 0.705, 95% CI 0.546-0.909), and calcification (OR 18.638, 95% CI 1.316-263.878) as independent risk factors for differentiating between duodenal GISTs and pancreatic head NENs (all P values < 0.05). The combined diagnostic model's AUC values based on central position of the lesion, calcification, lesion long axis orientation, the relationship between tumor and CBD, shortest diameter, and the joint diagnostic model were 0.937 (0.902-0.972), 0.700(0.624-0.776), 0.717(0.631-0.802), 0.559 (0.473-0.644), 0.680 (0.603-0.758), and 0.991(0.982-0.999), respectively, with a sensitivity of 97.3% and a specificity of 93.0% for the joint diagnostic model. The nomogram model's AUC value was 0.985(0.973-0.996), with a sensitivity and specificity of 94.7% and 93.9%, respectively. The calibration curve indicated good agreement between predicted and actual risks. Decision curve analysis verified the clinical application value of the nomogram.
Conclusion: The nomogram model based on CT imaging features effectively differentiates between duodenal GISTs and pancreatic head NENs, aiding in more precise clinical treatment decisions.
目的构建基于多层螺旋CT成像特征的提名图模型,以预测和区分十二指肠胃肠道间质瘤(GIST)和胰头神经内分泌肿瘤(NEN),为临床治疗决策提供影像学证据:方法:回顾性收集2013年11月至2022年11月期间复旦大学附属中山医院经手术病理证实的115例十二指肠GIST和76例胰头NEN的临床信息、病理结果和影像学资料。对比分析了肿瘤的最大直径、最短直径、长短径比、肿瘤形态、肿瘤边界、病灶中心位置、病灶长轴方向、肿瘤与总胆管(CBD)的关系、病灶十二指肠侧溃疡、钙化、肿瘤内囊实性比例、进食动脉增粗、肿瘤新生血管、远处转移,以及动脉期和静脉期平扫和增强扫描的 CT 值。统计分析采用 t 检验、曼-惠特尼 U 检验和 χ2 检验。单变量和多变量逻辑回归分析用于确定十二指肠 GIST 与胰头 NEN 之间的独立预测因素。根据这些独立预测因子,构建了一个提名图模型,并使用接收者操作特征曲线(ROC)来评估该模型的诊断性能。利用校准曲线验证了提名图,并应用决策曲线分析评估了提名图的临床应用价值:结果:十二指肠 GISTs 组和胰头 NENs 组在最长直径方面存在明显差异(P 结论:十二指肠 GISTs 组和胰头 NENs 组在最长直径方面存在明显差异(P 结论):基于CT成像特征的提名图模型能有效区分十二指肠GIST和胰头NENs,有助于做出更精确的临床治疗决策。
期刊介绍:
Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section.
Reasons to Publish Your Article in Abdominal Radiology:
· Official journal of the Society of Abdominal Radiology (SAR)
· Published in Cooperation with:
European Society of Gastrointestinal and Abdominal Radiology (ESGAR)
European Society of Urogenital Radiology (ESUR)
Asian Society of Abdominal Radiology (ASAR)
· Efficient handling and Expeditious review
· Author feedback is provided in a mentoring style
· Global readership
· Readers can earn CME credits