Shashi B Singh, Bimash B Shrestha, Om H Gandhi, Rajendra P Shah, Vaibhavi Mukhtiar, Cyrus Ayubcha, Vineet Desai, Christine E Eberts, Pranita Paudyal, Goody Jha, Anurag Singh, Yangyang Shi, Tushar Kumar
{"title":"The comparative utility of FAPI-based PET radiotracers over [<sup>18</sup>F]FDG in the assessment of malignancies.","authors":"Shashi B Singh, Bimash B Shrestha, Om H Gandhi, Rajendra P Shah, Vaibhavi Mukhtiar, Cyrus Ayubcha, Vineet Desai, Christine E Eberts, Pranita Paudyal, Goody Jha, Anurag Singh, Yangyang Shi, Tushar Kumar","doi":"10.62347/JXZI9315","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast activation protein (FAP) is a type II transmembrane serine protease overexpressed in cancer-associated fibroblasts (CAFs) and has been associated with poor prognosis. PET/CT imaging with radiolabeled FAP inhibitors (FAPI) is currently being studied for various malignancies. This review identifies the uses and limitations of FAPI PET/CT in malignancies and compares the advantages and disadvantages of FAPI and <sup>18</sup>F-fluorodeoxyglucose ([<sup>18</sup>F]FDG). Due to high uptake, rapid clearance from the circulation, and limited uptake in normal tissue, FAPI tumor-to-background contrast ratios are equivalent to or better than [<sup>18</sup>F]FDG in most applications. In several settings, FAPI has shown greater uptake specificity than [<sup>18</sup>F]FDG and improved sensitivity in detecting lymph node, bone, and visceral tissue metastases. Therefore, FAPI PET/CT may be complementary in distinguishing pathological lesions with conventional imaging, determining the primary site of malignancy, improving tumor staging, and detecting disease recurrence, especially in patients with inconclusive [<sup>18</sup>F]FDG PET/CT findings. Nevertheless, FAPI has limitations, including certain settings with non-specific uptake, modified uptake with age and menopause status, challenges with clinical access, and limited clinical evidence.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411191/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of nuclear medicine and molecular imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/JXZI9315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Fibroblast activation protein (FAP) is a type II transmembrane serine protease overexpressed in cancer-associated fibroblasts (CAFs) and has been associated with poor prognosis. PET/CT imaging with radiolabeled FAP inhibitors (FAPI) is currently being studied for various malignancies. This review identifies the uses and limitations of FAPI PET/CT in malignancies and compares the advantages and disadvantages of FAPI and 18F-fluorodeoxyglucose ([18F]FDG). Due to high uptake, rapid clearance from the circulation, and limited uptake in normal tissue, FAPI tumor-to-background contrast ratios are equivalent to or better than [18F]FDG in most applications. In several settings, FAPI has shown greater uptake specificity than [18F]FDG and improved sensitivity in detecting lymph node, bone, and visceral tissue metastases. Therefore, FAPI PET/CT may be complementary in distinguishing pathological lesions with conventional imaging, determining the primary site of malignancy, improving tumor staging, and detecting disease recurrence, especially in patients with inconclusive [18F]FDG PET/CT findings. Nevertheless, FAPI has limitations, including certain settings with non-specific uptake, modified uptake with age and menopause status, challenges with clinical access, and limited clinical evidence.
期刊介绍:
The scope of AJNMMI encompasses all areas of molecular imaging, including but not limited to: positron emission tomography (PET), single-photon emission computed tomography (SPECT), molecular magnetic resonance imaging, magnetic resonance spectroscopy, optical bioluminescence, optical fluorescence, targeted ultrasound, photoacoustic imaging, etc. AJNMMI welcomes original and review articles on both clinical investigation and preclinical research. Occasionally, special topic issues, short communications, editorials, and invited perspectives will also be published. Manuscripts, including figures and tables, must be original and not under consideration by another journal.