Francesco Ferrara, Chiara Verduci, Emanuela Laconi, Andrea Mangione, Chiara Dondi, Marta Del Vecchio, Veronica Carlevatti, Andrea Zovi, Maurizio Capuozzo, Roberto Langella
{"title":"Therapeutic Advances in Psoriasis: From Biologics to Emerging Oral Small Molecules.","authors":"Francesco Ferrara, Chiara Verduci, Emanuela Laconi, Andrea Mangione, Chiara Dondi, Marta Del Vecchio, Veronica Carlevatti, Andrea Zovi, Maurizio Capuozzo, Roberto Langella","doi":"10.3390/antib13030076","DOIUrl":null,"url":null,"abstract":"<p><p>Psoriasis is a persistent, inflammatory condition affecting millions globally, marked by excessive keratinocyte proliferation, immune cell infiltration, and widespread inflammation. Over the years, therapeutic approaches have developed significantly, shifting from conventional topical treatments and phototherapy to more sophisticated systemic interventions such as biologics and, recently, oral small-molecule drugs. This review seeks to present a comprehensive investigation of the existing psoriasis treatment options, focusing on biologic agents, oral small molecules, and emerging treatments. Several categories of biologic treatments have received regulatory approval for psoriasis, including TNF-α, IL-17, IL-12/23, and IL-23 inhibitors. Biologics have revolutionized the treatment of psoriasis. These targeted therapies offer significant improvement in disease control and quality of life, with acceptable safety profiles. However, limitations such as cost, potential immunogenicity, and administration challenges have driven the exploration of alternative treatment modalities. Oral small molecules, particularly inhibitors of Janus kinase (JAK), have emerged as options due to their convenience and efficacy. These agents represent a paradigm shift in the management of the condition, offering oral administration and targeted action on specific signaling pathways. In addition to existing therapies, the review explores emerging treatments that hold promise for the future of psoriasis care. These include innovative small-molecule inhibitors. Early-stage clinical trials suggest these agents may enhance outcomes for psoriasis patients. In conclusion, the therapeutic landscape of psoriasis is rapidly evolving, emphasizing targeted, patient-centered treatments. Ongoing research and development are expected to lead to more personalized and effective management strategies for this complex condition.</p>","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib13030076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Psoriasis is a persistent, inflammatory condition affecting millions globally, marked by excessive keratinocyte proliferation, immune cell infiltration, and widespread inflammation. Over the years, therapeutic approaches have developed significantly, shifting from conventional topical treatments and phototherapy to more sophisticated systemic interventions such as biologics and, recently, oral small-molecule drugs. This review seeks to present a comprehensive investigation of the existing psoriasis treatment options, focusing on biologic agents, oral small molecules, and emerging treatments. Several categories of biologic treatments have received regulatory approval for psoriasis, including TNF-α, IL-17, IL-12/23, and IL-23 inhibitors. Biologics have revolutionized the treatment of psoriasis. These targeted therapies offer significant improvement in disease control and quality of life, with acceptable safety profiles. However, limitations such as cost, potential immunogenicity, and administration challenges have driven the exploration of alternative treatment modalities. Oral small molecules, particularly inhibitors of Janus kinase (JAK), have emerged as options due to their convenience and efficacy. These agents represent a paradigm shift in the management of the condition, offering oral administration and targeted action on specific signaling pathways. In addition to existing therapies, the review explores emerging treatments that hold promise for the future of psoriasis care. These include innovative small-molecule inhibitors. Early-stage clinical trials suggest these agents may enhance outcomes for psoriasis patients. In conclusion, the therapeutic landscape of psoriasis is rapidly evolving, emphasizing targeted, patient-centered treatments. Ongoing research and development are expected to lead to more personalized and effective management strategies for this complex condition.
期刊介绍:
Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.