Adjusting for incomplete baseline covariates in randomized controlled trials: a cross-world imputation framework.

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae094
Yilin Song, James P Hughes, Ting Ye
{"title":"Adjusting for incomplete baseline covariates in randomized controlled trials: a cross-world imputation framework.","authors":"Yilin Song, James P Hughes, Ting Ye","doi":"10.1093/biomtc/ujae094","DOIUrl":null,"url":null,"abstract":"<p><p>In randomized controlled trials, adjusting for baseline covariates is commonly used to improve the precision of treatment effect estimation. However, covariates often have missing values. Recently, Zhao and Ding studied two simple strategies, the single imputation method and missingness-indicator method (MIM), to handle missing covariates and showed that both methods can provide an efficiency gain compared to not adjusting for covariates. To better understand and compare these two strategies, we propose and investigate a novel theoretical imputation framework termed cross-world imputation (CWI). This framework includes both single imputation and MIM as special cases, facilitating the comparison of their efficiency. Through the lens of CWI, we show that MIM implicitly searches for the optimal CWI values and thus achieves optimal efficiency. We also derive conditions under which the single imputation method, by searching for the optimal single imputation values, can achieve the same efficiency as the MIM. We illustrate our findings through simulation studies and a real data analysis based on the Childhood Adenotonsillectomy Trial. We conclude by discussing the practical implications of our findings.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae094","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In randomized controlled trials, adjusting for baseline covariates is commonly used to improve the precision of treatment effect estimation. However, covariates often have missing values. Recently, Zhao and Ding studied two simple strategies, the single imputation method and missingness-indicator method (MIM), to handle missing covariates and showed that both methods can provide an efficiency gain compared to not adjusting for covariates. To better understand and compare these two strategies, we propose and investigate a novel theoretical imputation framework termed cross-world imputation (CWI). This framework includes both single imputation and MIM as special cases, facilitating the comparison of their efficiency. Through the lens of CWI, we show that MIM implicitly searches for the optimal CWI values and thus achieves optimal efficiency. We also derive conditions under which the single imputation method, by searching for the optimal single imputation values, can achieve the same efficiency as the MIM. We illustrate our findings through simulation studies and a real data analysis based on the Childhood Adenotonsillectomy Trial. We conclude by discussing the practical implications of our findings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整随机对照试验中不完整的基线协变量:跨世界估算框架。
在随机对照试验中,调整基线协变量通常用于提高治疗效果估计的精确度。然而,协变量往往存在缺失值。最近,赵(Zhao)和丁(Ding)研究了处理缺失协变量的两种简单策略,即单一估算法和缺失指示器法(MIM),结果表明,与不调整协变量相比,这两种方法都能提高效率。为了更好地理解和比较这两种策略,我们提出并研究了一种新的理论估算框架,称为跨世界估算(CWI)。该框架将单一估算和 MIM 作为特例,便于比较它们的效率。通过 CWI 的视角,我们表明 MIM 会隐含地搜索最佳 CWI 值,从而实现最佳效率。我们还推导出了单一估算方法通过寻找最佳单一估算值而达到与 MIM 相同效率的条件。我们通过模拟研究和基于儿童腺样体切除术试验的真实数据分析来说明我们的发现。最后,我们将讨论我们的发现的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Composite dyadic models for spatio-temporal data. ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Bayesian network-guided sparse regression with flexible varying effects. Group sequential testing of a treatment effect using a surrogate marker. On network deconvolution for undirected graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1